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PREFACE

This booklet represents the outcome of a teamwork project for students in the course «TMA4850
- Experts in Teamwork - Mathematics in Applications» at the Norwegian University of Science
and Technology (NTNU) during the Spring 2014 semester. The course agenda is to set up a larger
group project with practical applications, where students from various disciplines come together
and contribute with their academic skills. Moreover, a special focus is given to how groups
operate and function, and facilitation during the teamwork stimulates continuous evaluation
and implementation of concepts with regards to group effectivity.

With a quite ambitious project given the time constraints and previous knowledge, there
have been several challenges during the course. But we feel the results are considerable higher
than what was realistically expected initially.

We want to thank our supervisor Trond Kvamsdal both for outlining a project description on
modeling flex curves in alpine skis, developed by ski producer Endre Hals, and support during
the course. Also, a special thanks goes to Endre Hals for inviting us to his production facility,
providing data during the modeling and giving us a pair of skis for testing purposes. In addition,
we received great help from both Arne Morten Kvarving from SINTEF and Ph.D fellow Kjetil
André Johannessen with regards to generating useful data structures for the ski model. At last
we would like to mention our group facilitators Mai Sharoni and Sebastian Jørgensen.

Trondheim, May 2, 2014

Bjørn Harald Snersrud Fredrik Hildrum

Herman Galteland Jon Vegard Venås Magnus Norum
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IV PREFACE

TEAM STRUCTURE

In this section we present some details of the team structure and how the group’s academic
competences impacted the working process.

THE MAC-MODEL

Our team has worked under the governing village theme «Mathematics in Applications», and as
a foundational philosophy the so-called MAC-model has been used. Introduced to us by the
village supervisor Trond Kvamsdal, the Mathematics, Applications and Computer science model
highlights the effective interactions between different scientific groups. Powerful modern teams
within the areas of applied mathematics need to cooperate with people from the specific physical
application, and implementations of numerical procedures benefit highly from expertize from
the computer science world.

In Figure 1, our team structure according to the MAC-model is presented. Even though
there are no experts in computer science, both Jon Vegard and Fredrik have solid experience with
implementation of numerical models. Nonetheless, a dedicated member with skills in computer
science could have managed the technicalities in applying for example parallel algorithms for
better performance.

ACADEMIC COMPOSITION

With «mathematical modeling of flex curves in customized alpine skis using isogeometric analysis»
as the project title, the necessity of both mathematical- and applicational skills is clear. Since
Bjørn Harald’s expertize lies in industrial mechanics, it was quite natural that he studied some
of the underlying structural mechanics and designed the CAD ski model. Moreover, as Magnus

Mathematics
Herman, Jon Vegard and Fredrik

Applications
Bjørn Harald and Magnus

Computer science
None

Figure 1: Team structure according to the MAC-model.
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have knowledge on material properties and practical experience as a carpenter, he focused in
particular on testing the materials in the ski core.

When it came to the necessary mathematical basis, both Jon Vegard and Fredrik had
previously worked together with the finite element method. With this foundation, the topic of
isogeometric analysis stood out as exciting and interesting. Since neither of them had knowledge
on this subject, the task was quite ambitious. During the project it became evident, due to Jon
Vegard’s extensive contribution and gained knowledge from a specific course, that he operated
the main mathematical analysis, both theoretically and numerically. Also, as Jon Vegard will
continue with a master study on this topic, and thus saw this project as very useful practical
preparation.

Herman is a master student in mathematics, with specialization in abstract algebra and
cryptography. It was not easy to obtain a project description that could fit his skills with the
other members’ capabilities. But when the idea of generating a web presentation displaying
details of the project, Herman decided that he could contribute on this development. Since
Fredrik had some past familiarity and personal enthusiasm with making websites, they cooperated
the process throughout the semester.

As the isogeometric analysis approach establishes direct interaction between CAD and the
finite element method, Bjørn Harald and Jon Vegard interacted repeatedly to obtain a useful
model. Also, on the structural mechanics side, both Magnus and Bjørn Harald worked side by
side on theory and applications.

All in all, the academic composition fitted the project description quite well. Some additional
competence in computer science may have resulted in a more advanced implementation of the
numerics, and that the link between CAD software and the finite element codes could have been
easier to establish. Though not of crucial importance, the group, however, also recognizes that
presentational skills, such as a creating website, is useful for public recognition of the project,
and thus the work of Herman and Fredrik suited the team well.
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Chapter 1

INTRODUCTION

1.1 SKI HISTORY AND THE INTRODUCTION OF FLEX CURVES

Although the concept of skiing dates long back, commercial production of skis became huge first
in the 20th century. From the 1950s and onward, the introduction of material structures with
metal, fiberglass or carbon fiber, resulted in more complex products. Today, the construction
methods enable fine-tuning of ski characteristics when it comes to quality, user preferences and
durability.

As mentioned by the Norwegian ski producer Endre Hals [1], the last 10 years have seen a
dramatic change in public awareness of ski shapes. This has forced ski companies to modify their
construction facilities. Moreover, with the increased demand for personally adapted products
comes the need for a measure of the various qualities.

Important in this discussion is the notion of ski stiffness, or perhaps its more common version
known as the ski flexibility, or flex for short. The geometry and choice of materials impact the
physical properties of alpine skis, and the complexity of today’s models may just increase the
stiffness variability. Endre Hals notes that there have been much debate about ski stiffness, but
the arguments lack an objective language.

1.1.1 THE SKI FLEX INDEX

Essential in this context is how the flex should be calculated. In [2] longitudinal deflection is
measured via placing weights on the binding mounting center of the ski. But, as Hals argues,
this simple process does not capture a satisfactory amount of information. As a remedy, he
proposed so-called flex curves and a new standard called the ski flex index (SFI) in his diploma
thesis.

Cooperating with the Norwegian sports magazine Fri Flyt, he measured selected freestyle-
and freeride skis for the 2008 season. With the middle of a ski as a reference point and origin,
typically 8 deflection tests on both sides of the ski were used for calculating displacement.
Moreover, each such measurement was separated by 100mm. He then combined the results into
flex curves, which draw the distribution of ski stiffness. At the same time some recalculations
have been done to make skis of different lengths comparable. An example of a flex curve can be
seen in Figure 1.1 with measurements from Table 1.1.

In order to ease the understanding of the data for the broader public, the ski flex index
consists of five numbers corresponding to the back tip, back ski, mid ski, front ski and front tip,

1
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Figure 1.1: Flex curve based on experimental data from Table 1.1 generated by Endre Hals.

respectively. The numbers, ranging from 1 through 9, are based upon a formula via average
flex curves. Soft skis get low numbers, while large numbers correspond to stiff models, and a
completely average ski gets the SFI 5 5 5 5 5. The ski from Table 1.1 results in the SFI 3 5 6 4 4,
which suggest an overall flex index of 4. As Hals comments, it is still open what values may be
considered optimal, but they may anyway serve as a better foundation for further discussions.

Table 1.1: Data set from experiments made by Endre Hals. The data from the location 80 cm was not
added due to the large displacement of this measurement.

Location (cm) Displacement (mm) Stiffness (N/mm) Flex number Average
-80 5.74 43.3 3.1

3-70 3.19 77.9 3.2
-60 1.74 143 3.2
-50 0.82 303 4.5

5-40 0.51 487 5.4
-30 0.39 637 6.1
-20 0.37 672 6.0

6-10 0.37 672 5.9
10 0.35 710 6.4
20 0.41 606 5.7
30 0.6 336 4.5

440 0.74 414 4.7
50 1.35 184 3.8
60 2.37 105 3.6 470 4.25 58.5 3.5
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1.2 THE PROBLEM DESCRIPTION

In this report we have tried to set up a complete model of a customized alpine ski in order to
estimate its associated flex curve. Our goal has been to computationally replicate the entire
measurement procedure done by Hals, and then compare the estimated flex curve with real data.
Another objective was to make some details of the process, methods and results available to the
broader public and upcoming students at NTNU via a web presentation.

1.3 OVERVIEW OF THE PROJECT

We do not focus on the SFI, which we believe to be an unstable standard. Since it is based on
average flex curves, the ski flex index will actually float during the coming years. The flex curves
are, however, not affected by this.

The analyzed ski is designed by Endre Hals, and in close cooperation with him, we have tried
to create a 3D CAD model which captures the essential features of the ski. Several extensive
laboratory tests have been carried out for the estimation of key material properties.

As a mathematical framework, the so-called isogeometric analysis (IGA) approach has been
used. Building on the finite element method (FEM), IGA establishes a direct link between CAD
design tools and FEM software which enables exact transfer of the geometry. Our reason for
choosing IGA was twofold. First, it is a very fresh and promising technology, being introduced
in 2005 by Hughes et al. [3]. Second, having acquired some experience with FEM, extending to
IGA seemed like an interesting challenge. In addition our working team consisted of members
capable of designing CAD models.

The governing physical equations throughout the project are based on linear elasticity, and
the underlying assumptions from linear elasticity fit well in this context since the measured dis-
placements are small. Also, the resulting partial differential equations give numerical procedures
adequate for the level of the working team.

In chapter 2 we begin outlining details of IGA, along with error analysis of several numerical
examples. chapter 3 then discusses the structural components of the ski and results from the
laboratory tests. An overview of the design of the 3D model can be found in chapter 4. Here
also details of the ski geometry are given.

The numerical replication of the measurement procedure is named «The Flex Computer» and
is the content of chapter 5. From then on chapter 6 gives the main results of the project combined
with thorough discussions. In chapter 7 details of the construction of the web presentation
associated with the project are outlined. Lastly, conclusions and suggestions for further work
can be found in chapter 8.

The intended readership is somewhat mixed, and we try to meet several audiences. Mostly,
we target advanced undergraduates with interest in mathematical modeling using isogeometric
analysis (IGA). However, also a more general public user group such as alpine ski producers



4 CHAPTER 1 INTRODUCTION

or ski enthusiasts may benefit from our methods. Indeed, the text may be looked upon as a
technical report used in the enhancement of ski products.

Much of the content require experience with industrial mechanics and numerical mathematics.
In particular, familiarity with the finite element method is of great help for understanding the
IGA in chapter 2, and may be the most difficult component to digest in this booklet.



Chapter 2

ISOGEOMETRIC ANALYSIS

Our main mathematical tool to model alpine ski is known as isogeometric analysis (IGA), which
is basically an extension of the finite element method (FEM) using non-uniform rational B-splines
(NURBS) as basis functions. Being introduced in 2005 by Hughes et al. [3], followed by the
book [4] in 2009, IGA tries to bridge the gap between finite element analysis and CAD design
tools. The important future of IGA is that it uses the same basis as CAD software for describing
the given geometry, and thus exact representation of the model is possible. It is therefore natural
to include a section considering this basis in the beginning before we set up the IGA. Note that
only the relevant parts of the IGA will be presented, and even here we shall be brief. This
chapter assumes the reader is somewhat familiar which the finite element method.

The underlying assumption for our analysis is linear elasticity. The resulting equations will
be the fundamental equations to which we apply IGA. The notation will be presented and the
complete partial differential equation will be presented.

Initially the IGA implementation was entirely based on the library given in [5]. This library
have implemented NURBS calculations in C, and have a lot of other artillery which we will not
need. We have rewritten all code implemented in C into MATALB, and many more adjustments
have been done, even some optimalizations concerning how the sparse global stiffness matrix
is built. In this regard it must be noted that the original code written in C is faster then the
corresponding rewritten code in MATLAB. It was not necessary to rewrite all parts of the library,
so only the parts which are edited will be presented in whats follows. For the remaining part
of the code, we refer to [5]. When presenting the theory, we shall consecutively present the
corresponding implementation in MATLAB. In this regard we present explanations for the most
important variables used, and writes the corresponding variable names used in MATLAB, in
Table 2.1.

Variable MATLAB Description
ξ, η, ζ xi, eta, zeta Free variables in the parametric space
Ξ, H, Z Xi, Eta, Zeta Knot vectors in ξ, η and ζ direction respectively.
p, q, r p, q, r NURBS order in ξ, η and ζ direction respectively.
n, m, l n, m, l Number of control points in ξ, η and ζ direction respectively.
ν, E nu, E Poisson’s ratio and Youngs Modulus
C , ke, K C, k_e, K Elacitity matrix, element- and global stiffness matrix
neq = 3nml noDofs Number of degrees of freedom/equations
nen n_en Number of non zero basis functions at (ξ, η, ζ)

Table 2.1: Description of the different variables used in this report and corresponding variable names
used in MATLAB.

5
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2.1 NURBS

The NURBS basis is built by B-splines. So an understanding of B-splines is crucial to under-
standing NURBS. Let p be the polynomial order, let n be the number of functions and let
Ξ = {ξ1, ξ2, . . . , ξn+p+1} be an ordered vector with non decreasing elements (referred to as a
knot vector). Then, the B-spline Ni,p are recursively defined by (for p = 0)

Ni,0(ξ) =

1 if ξi ≤ ξ < ξi+1

0 otherwise
(2.1)

and for p = 1, 2, 3, . . . we have

Ni,p(ξ) = ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) + ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ).

This forumla is referred to as Cox-deBoor formula, and the derivative of a spline may be
computed by

d
dξNi,p(ξ) = p

ξi+p − ξi
Ni,p−1(ξ)− p

ξi+p+1 − ξi+1
Ni+1,p−1(ξ).

Throughout the project we shall use open knot vectors. That is, the first and last element in the
vector is repeated p+ 1 times. Moreover, we shall use normalized knot vectors, which simply
spans from 0 to 1. We shall build upon this information to optimize algorithms. When we want
to evaluate a B-spline at a fixed ξ it is important to note that it is very redundant to evaluate
all n basis function. This is due to the small support of each function. In fact, it turns out that
only (at most) p+ 1 basis functions are non-zero at ξ. It is important to then only use these
function to have an efficient code. One typically then implements a function which find the span
corresponding to a given ξ. Due to the ordering of the knot vector, we may use a binary search
algorithm for finding this span. The span will be defined by the index i corresponding to the
first basis function which is non-zero at ξ. The following listing represents the algorithm called
findKnotSpan.m.

if xi == 1

i = n;

else

i = floor((n+1)/2) + p;

while true

if xi >= Xi(i)

if xi < Xi(i+1)

return

end

i = floor((n+1−i)/2) + i;

else

if xi >= Xi(i−1)
i = i − 1;

return

end
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i = floor((i−p)/2) + p;

end

end

end

As an example, if p = 2 and n = 8 and we want to evaluate a B-spline with the knot vector
Ξ = {0, 0, 0, 0.1, 0.3, 0.5, 0.8, 0.9, 1, 1, 1}, we get the index i = 3 if ξ = 0.09, i = 6 if ξ = 0.5 and
i = n = 8 if ξ = 0.9 or ξ = 1.0.

We are now ready to implmenet a program which evaluates B-splines using the previous
routine. When the recursion formula is used to evaluate the p+ 1 functions which are non-zero
at ξ, the function Ni,0 is the only function of order zero which is non-zero at ξ. Everything is
thus build from this function. We then have the following graph

Ni,0 → Ni−1,1 → Ni−2,2 · · · Ni−p+1,p−1 → Ni−p,p

↘ ↘ ↘
Ni,1 → Ni−1,2 · · · Ni−p+2,p−1 → Ni−p+1,p

↘ ↘
Ni,2 · · · Ni−p+3,p−1 → Ni−p+2,p

. . . ...
...

...
Ni,p−1 → Ni−1,p

↘
Ni,p

where the values colored red is used to calculate the nonzero derivatives at the same ξ. It is
then clear that we need two loops. The outer loop should iterate over the columns of this graph
and the inner loop should iterate over the rows. The output of the function Bspline_basis is
simply an array N which contains the p+ 1 functions which are evaluated at ξ. To save memory
one should also store the intermediate values Ni−j+k,j−1 in this same array. Thus, we need to
store N(k−1) to compute N(k) (which we store in the variable saved). Here, j is the loop index
of the outer loop, while k is the loop index of the inner loop. The first iteration (when p = 0)
should be done seperately with (2.1). Finally, we use the convention that 0/0 = 0.

N = zeros(1,p+1);

N(1) = 1;

saved = 1;

for j = 2:p+1

% For k = 1 there is no dependence on N(k−1) of the previous run.

for k = 1:j

% Compute N_{i−j+k,j−1} according to the Cox−deBoor formula

temp = 0;

if k ~= j

temp = (Xi(i+k)−xi)/(Xi(i+k)−Xi(i−j+k+1))*N(k);
end

if k ~= 1

temp = temp + (xi−Xi(i−j+k))/(Xi(i+k−1)−Xi(i−j+k))*saved;
end
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saved = N(k);

N(k) = temp;

end

end

A way to veryfy this implementation is to check that the nonegativity and the partion of unity
holds,

Ni,p(ξ) ≥ 0 and
n∑
i=1

Ni,p(ξ) = 1 ∀ξ, p,

which is important properties of B-splines. We will finally need to compute the corresponding
derivatives. Once again, only p+ 1 derivatives will be non zero at ξ. Let N_tilde be an array
containing the red values in the previous graph. We may then compute these as in the following
listing

dNdxi = zeros(1,p+1);

dNdxi(1:p) = p*N_tilde./(Xi(i+1:i+p)−Xi(i−p+1:i));
dNdxi(2:p+1) = dNdxi(2:p+1) − p*N_tilde./(Xi(i+1:i+p)−Xi(i+1−p:i));

Since we only need these derivatives also when the corresponding values for the basis function is
needed, we extend the function Bspline_basis into a new function called Bspline_basisDers.
We then avoid redundant calculations.

A B-spline volume may now be represented by

V (ξ, η, ζ) =
n∑
i=1

m∑
j=1

l∑
k=1

Ni,p(ξ)Mj,q(η)Lk,r(ζ)Pi,j,k (2.2)

where P contains the n ·m · l controlpoint of the volume. For a given (ξ, η, ζ), this formula
does a lot of redundant computations as discussed so far. Namely, given a (ξ, η, ζ), only
(p+ 1) · (q+ 1) · (r+ 1) basis functions will contribute. If these nonzero basis functions evaluated
at a given point (ξ, η, ζ) are stored in M, N and L, we may rewrite (2.2) as

V (ξ, η, ζ) =
p+1∑
k1=1

q+1∑
k2=1

r+1∑
k3=1

NA1,p(ξ)︸ ︷︷ ︸
N(k1)

MA2,q(η)︸ ︷︷ ︸
M(k2)

LA3,r(ζ)︸ ︷︷ ︸
L(k3)

PA1,A2,A3

where

A1 = i1 − p+ k1 − 1

A2 = i2 − q + k2 − 1

A3 = i3 − r + k3 − 1

and i1, i2 and i3 are knot span index corresponding to ξ, η and ζ, respectively. This observation
will be used frequently when dealing with corresponding sums in the NURBS basis.
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Given a set of weights w corresponding to each basis function the NURBS basis functions in
3D may be expressed by

Rp,q,ri,j,k (ξ, η, ζ) = Ni,p(ξ)Mj,q(η)Lk,r(ζ)wi,j,k
W (ξ, η, ζ) (2.3)

where

W (ξ, η, ζ) =
p+1∑
k1=1

q+1∑
k2=1

r+1∑
k3=1

NA1,p(ξ)︸ ︷︷ ︸
N(k1)

MA2,q(η)︸ ︷︷ ︸
M(k2)

LA3,r(ζ)︸ ︷︷ ︸
L(k3)

wA1,A2,A3 .

The partial derivatives of these functions is then given by the quotient rule

∂Rp,q,ri,j,k (ξ, η, ζ)
∂ξ

=
W (ξ, η, ζ)N ′i,p(ξ)−Wξ(ξ, η, ζ)Ni,p(ξ)

(W (ξ, η, ζ))2 Mj,q(η)Lk,r(ζ)wi,j,k (2.4)

where

Wξ(ξ, η, ζ) =
p+1∑
k1=1

q+1∑
k2=1

r+1∑
k3=1

N ′A1,p(ξ)︸ ︷︷ ︸
dNdxi(k1)

MA2,q(η)︸ ︷︷ ︸
M(k2)

LA3,r(ζ)︸ ︷︷ ︸
L(k3)

wA1,A2,A3

and
N ′i,p(ξ) = dNi,p(ξ)

dξ .

Similar expressions may be found for the partial derivatives with respect to η and ζ. We may
now insert all of this into a routine which computes the nonzero basis functions at a given point
(ξ, η, ζ) and the corresponding nonzero derivatives. This function is called NURBS3DBasisDers.
After finding the nonzero B-spline functions and their corresponding derivatives as discussed
above, it continues by first finding the function W and it’s corresponding derivatives. This is
illustrated in the following listing.

for k3 = 1:r+1

A3 = i3 − r + k3 − 1;

for k2 = 1:q+1

A2 = i2 − q + k2 − 1;

for k1 = 1:p+1

A1 = i1 − p + k1 − 1;

A = (m*n)*(A3−1) + n*(A2−1) + A1;

W = W + N(k1)*M(k2)*L(k3)*weights(A);

dWdxi = dWdxi + dNdxi(k1)*M(k2)*L(k3)*weights(A);

dWdeta = dWdeta + dMdeta(k2)*N(k1)*L(k3)*weights(A);

dWdzeta = dWdzeta + dLdzeta(k3)*N(k1)*M(k2)*weights(A);

end

end

end

Note the use of the index A which is convenient when weights is located in an long array (which
is the format we shall use when doing the IGA analysis). Finally, the function can now compute
the NURBS basis alongside the corresponding derivatives as shown in the following listing.
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for k3 = 1:r+1

A3 = i3 − r + k3 − 1;

for k2 = 1:q+1

A2 = i2 − q + k2 − 1;

for k1 = 1:p+1

A1 = i1 − p + k1 − 1;

A = (m*n)*(A3−1) + n*(A2−1) + A1;

a = 9*(k3−1) + 3*(k2−1) + k1;

fac = weights(A)/W^2;

NML = N(k1)*M(k2)*L(k3);

R(a) = NML*weights(A);

dRdxi(a) = (dNdxi(k1)*M(k2)*L(k3)*W − NML*dWdxi) * fac;

dRdeta(a) = (dMdeta(k2)*N(k1)*L(k3)*W − NML*dWdeta) * fac;

dRdzeta(a) = (dLdzeta(k3)*N(k1)*M(k2)*W − NML*dWdzeta) * fac;

end

end

end

Note the use of the intermediate variables fac and NML which is used to avoid redundant
computations. The index a loops over the nen = (p+ 1) · (q + 1) · (r + 1) nonzero functions.

2.2 LINEAR ELASTICITY

One important assumption for using linear elasticity is that only small deformations of the
material occurs. This is due to the linearized quantities. We shall here not go in detail on
how to derive the needed equations from Hooke’s law, but we present the notation used in the
formulation of the isogeometric analysis.

The notations used, takes inspirations from [4]. In this section, the indices i, j, k and l will
denote a specific spatial direction. We shall model everything in three dimensions, such that
i, j, k, l = 1, 2, 3. Moreover, ui shall denote the ith component of the vector u and differentiation
is denoted with a comma such that

ui,j = ui,xj = ∂ui
∂xj

.

Finally, we use the convention that if an index is repeated, it imply summation. That is,

σijnj = σi,1n1 + σi,2n2 + σi,3n3

and
σij,j + fi = ∂σi1

∂x1
+ ∂σi2
∂x2

+ ∂σi3
∂x3

+ fi.

Note that we do not sum over i in the latter example since the quantities are separated by a
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plus sign. Define now the symmetric part of a general tensor A = [Aij ] to be

A(ij) = A(ji) := Aij +Aji
2

and note that if B = [Bij ] = [B(ij)] is a symmetric tensor, then

AijBij = A(ij)Bij . (2.5)

That is, we can combine the components of B which are equal to reduce redundant computations.

Let now σij denote the Cartesian components of the Cauchy stress tensor and let εij denote
the infinitesimal strain tensor which is defined by

εij = u(i,j) = ui,j + uj,i
2 .

We can now state the relation between εij as σij using the generalized Hooke’s law as

σij = cijklεkl

where cijkl are elastic coefficients. In the case of isotropic material, these coefficients are given
by

cijkl = νE

(1 + ν)(1− 2ν)δijδkl + E

2(1 + ν) (δikδjl + δilδjk)

where the Kronecker delta function is given by

δij =

1 i = j

0 otherwise

and the parameters E and ν are Young’s modulus and Poisson’s ratio respectively. We are now
ready to state the strong form of the linear elasticity problem in three dimensions.

Let Ω ⊂ R3 be the domain with a boundary ∂Ω which is composed of two parts; ΓDi and
ΓNi . These are called Dirichlet and Neumann boundary conditions, respectively, and satisfies⋃3
i=1 ΓDi ∪ ΓNi = ∂Ω and ΓDi ∩ ΓNi = ∅. Moreover, let the functions fi : Ω→ R, gi : ΓDi → R

and hi : ΓNi → R be given. Then, find ui : Ω→ R such that

σij,j + fi = 0 in Ω, (2.6)

ui = gi on ΓDi , (2.7)

σijnj = hi on ΓNi , (2.8)

for i = 1, 2, 3. In this project, we will only consider boundaries which are entirely Neumann
boundaries or Dirichlet boundaries, respectively. That is, ΓDi = ΓD and ΓNi = ΓN for all i.

In this project, we neglect any body forces such as gravity, such that fi = 0. Moreover, we
shall only need homogeneous Dirichlet conditions such that gi = 0.
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2.3 THE WEAK FORM AND GALERKIN’S METHOD

The weak form of the problem is derived from the strong form. Typically, one defines two classes
of functions: Si denotes the solution space and Vi denotes the weighting space for a given spatial
component i. These spaces are made in order to handle non homogeneous Dirichlet boundary
conditions, but since we have homogeneous Dirichlet boundary conditions, these spaces will be
the same. That is, Si = Vi for i = 1, 2, 3. Typically, Si is a subspace of the Sobolev space H1(Ω)
(which consist of all functions which have square-integrable derivatives) with a condition such
that the Dirichlet boundary condition is satisfied.

We now multiply each of the equations in (2.6) by a corresponding test functions vi ∈ Si
and sum these three equations into one single equation given by

viσij,j = −vifi

which can be written as
vi∇ · σ̄i = −vifi

where

σ̄i =


σi1

σi2

σi3

 .
Integrating over the domain yields∫

Ω
vi∇ · σ̄i dΩ = −

∫
Ω
vifi dΩ. (2.9)

Consider the divergence theorem ∫
Ω
∇ ·Ψ dΩ =

∫
∂Ω

Ψ · n dΩ

with Ψ = viσ̄i. Note that

∇ ·Ψ = ∇ · (viσ̄i) = ∇vi · σ̄i + vi∇ · σ̄i

which inserted in the divergence theorem yields∫
Ω
vi∇ · σ̄i dΩ = −

∫
Ω
∇vi · σ̄i dΩ +

∫
∂Ω
viσ̄i · n dΩ.

We may now insert this into (2.9) such that∫
Ω
∇vi · σ̄i dΩ =

∫
ΓN

viσ̄i · n dΩ +
∫

Ω
vifi dΩ. (2.10)

Note that we only integrate over the Neumann part of the boundary since the integral over the
vanishes (the test function vi is zero at this boundary). Also note that the domain of integration
for the boundary integral is depending on i. Returning to the index summation convention we
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may rewrite (2.10) as ∫
Ω
vi,jσij dΩ =

∫
ΓN

vi(σijnj) dΓ +
∫

Ω
vifi dΩ

which using the boundary conditions, and the fact that fi = 0 for our case, may be written as∫
Ω
v(i,j)σij dΩ =

∫
ΓN

vihj dΓ.

Note that since [σij ] is a symmetric tensor, we have used (2.5) to only write the symmetric part
of vi,j . If we now define the space S = {u |ui ∈ Si} we can state the weak formulation in a
concise form: Find u ∈ S such that for all v ∈ S we have

a(v,u) = L(v)

where
a(v,u) =

∫
Ω
v(i,j)cijklu(k,l) dΩ (2.11)

and
L(v) =

∫
ΓN

vihj dΓ.

Here we have used the relation σij = cijklεkl = cijklu(k,l).

We now want to transform this weak statement into a system of algebraic equations. We here
apply Galerkin’s method and now turn to a finite-dimensional subspace Sh ⊂ S. The basis for
this subspace is the presented NURBS basis. But note that we will have vector valued control
variables. The Galerkin approximation of the weak form is now given by: Find uh ∈ Sh such
that

a(vh,uh) = L(vh) (2.12)

for all vh ∈ Sh.

To find the system of algebraic equations we need to write uh as a linear combination of the
basis functions. First, let η = {1, . . . , nnp} (where nnp is the number of basis functions) be the
set containing the indices of all the functions in the NURBS basis defining the geometry and let
ηgi
⊂ η be the set containing the indices of all the basis functions that are non-zero on ΓD. Due

to the homogeneous Dirichlet boundary condition, we may write the ith component of vh and
the jth component of uh as

vhi =
∑

A∈η−ηgi

RAciA and uhj =
∑

B∈η−ηgj

RAdjB (2.13)

respectively, where η−ηgi
denotes set subtraction. Using the same index summation convention

we may now write
vh = vhi ei and uh = uhj ej (2.14)
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where the unit vectors ei are given by

e1 =


1
0
0

 , e2 =


0
1
0

 , and e3 =


0
0
1

 .
The finale step is now to insert (2.14) (using (2.13)) into (2.12) such that we obtain a matrix
formulation of the problem. Insertion yields

a

 ∑
A∈η−ηgj

RAciAei,
∑

B∈η−ηgi

RBdjBej

− L
 ∑
A∈η−ηgi

RAciAei

 = 0

which using the bilinearity of a and the linearity of L may be written as

∑
A∈η−ηgi

ciA

 ∑
B∈η−ηgi

a (RAei, RBej) djB − L (RAei)

 = 0.

Since the coefficients ciA is arbitrary (the relation should hold for all vh ∈ Sh) the term in the
parentheses must vanish. That is, for all A ∈ η − ηgi

and i = 1, 2, 3 we have

∑
B∈η−ηgi

a (RAei, RBej) djB = L (RAei) .

One should typically make a system of the ordering of these equations. That is, one should
create a function ID which collapse the indices i and A into a single index. A given equation
then has the index P = ID(i, A) and the index over all unknown components of the displacement
vectors are called Q = ID(j, B). The resulting system of equation may then be written as

KU = F

where

K = [KPQ] ,

U = {dQ},

F = {FP },

and

KPQ = a (RAei, RBej) ,

FP = L(RAej),

dQ = djB.
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2.4 ASSEMBLY

As for the finite element method, one typically do not loop through the basis functions. Rather,
we loop through the elements constructing local stiffness matrices and successfully place their
element in the global stiffness matrix. Let us first introduce some notations. The elastic
coefficients are typically inserted in a matrix C called the elasticity matrix. It is defined by

C =



c1111 c1122 c1133 c1123 c1113 c1112

c2222 c2233 c2223 c2213 c2212

c3333 c3323 c3313 c3312

c2323 c2323 c2312

symmetric c1313 c1312

c1212


,

or in our case, more explicitly by

C = E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 (1− 2ν)/2 0 0
0 0 0 0 (1− 2ν)/2 0
0 0 0 0 0 (1− 2ν)/2


.

Moreover, define the strain vector and the stress vector to be

ε(u) =



u1,1

u2,2

u3,3

u2,3 + u3,2

u3,1 + u1,3

u1,2 + u2,1


and σ =



σ11

σ22

σ33

σ23

σ13

σ12


.

Then
σ = Cε(u),

such that we may write the bilinear form in (2.11) as

a(v,u) =
∫

Ω
ε(v)>Cε(u) dΩ.

Also note that
ε(RAei) = BAei,
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where

BA =



RA,1 0 0
0 RA,2 0
0 0 RA,3

0 RA,3 RA,2

RA,3 0 RA,1

RA,2 RA,1 0


.

The entries in the global stiffness matrix may then be written as

KPQ = a (RAei, RBej) = e>i
∫

Ω
B>ACBB dΩ ej .

Let Ωe be the domain of a given element, where the index e loops over all elements. The support
of the NURBS are highly localized. To reduce computations, we should only integrate over
functions which have support in Ωe. If we have nen such local shape functions, and let a and b
iterate over these functions, we may calculate the entries in the local stiffness matrix as

kepq = e>i
∫

Ωe
B>a CBb dΩ ej

where
p = nen(i− 1) + a and q = nen(j − 1) + b.

The local force vector may similarly be calculated by

fep =
∫

Γe
N

RAhi dΓ. (2.15)

The integration is done by quadrature formulas. One first maps to the parametric domain, and
then map this domain to a parent domain. The element in the parametric domain, corresponding
to Ωe, is given by

Ω̂e = [ξi, ξi+1]× [ηi, ηi+1]× [ζi, ζi+1].

In three dimension we want to map this domain into the parent domain given by

Ω̃e = [−1, 1]× [−1, 1]× [−1, 1].

So given (ξ̃, η̃, ζ̃) ∈ Ω̃e, we calculate (ξ, η, ζ) ∈ Ω̂e by

ξ = ξi + (ξ̃ + 1)ξi+1 − ξi
2 ,

η = ηi + (η̃ + 1)ηi+1 − ηi
2 ,

ζ = ζi + (ζ̃ + 1)ζi+1 − ζi
2 .
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The Jacobian determinant for the parametric to parent mapping is thus given by

J2 =

∣∣∣∣∣∣∣∣∣
∂ξ

∂ξ̃

∂ξ
∂η̃

∂ξ

∂ζ̃
∂η

∂ξ̃

∂η
∂η̃

∂η

∂ζ̃
∂ζ

∂ξ̃

∂ζ
∂η̃

∂ζ

∂ζ̃

∣∣∣∣∣∣∣∣∣ = 1
8(ξi+1 − ξi)(ηi+1 − ηi)(ζi+1 − ζi).

Similarly, we need the Jacobian for the mapping from the physical domain into the parametric
domain. Given (ξ, η, ζ) ∈ Ω̂e, we calculate (x, y, z) = (x1, x2, x3) ∈ Ωe by

x1

x2

x3

 =
n∑
i=1

m∑
j=1

l∑
k=1

Rp,q,ri,j,k (ξ, η, ζ)Pi,j,k =
nen∑
a=1

Ra(ξ, η, ζ)Pa

where Pi,j,k are the control points and Rp,q,ri,j,k (ξ, η, ζ) are the NURBS basis functions which are
computed by (2.3). Note that the last equality again comes from the highly localized support of
the NURBS basis. The Jacobian matrix is thus given by

J =


∂x1
∂ξ

∂x1
∂η

∂x1
∂ζ

∂x2
∂ξ

∂x2
∂η

∂x2
∂ζ

∂x3
∂ξ

∂x3
∂η

∂x3
∂ζ

 =
[
P1 P2 · · · Pnen

]


∂R1
∂ξ

∂R1
∂η

∂R1
∂ζ

∂R2
∂ξ

∂R2
∂η

∂R2
∂ζ

...
...

...
∂Rnen
∂ξ

∂Rnen
∂η

∂Rnen
∂ζ


such that the Jacobian determinant of this transformation is given by

J1 = det(J)

where the derivatives of the NURBS basis functions are computed by (2.4). The matrix Ba

contains derivatives of the NURBS functions w.r.t. physical coordinates. So we need to find
expressions for ∂R

∂xi
. By the chain rule we have

∂R

∂ξ
= ∂R

∂x1

∂x1
∂ξ

+ ∂R

∂x2

∂x2
∂ξ

+ ∂R

∂x3

∂x3
∂ξ

∂R

∂η
= ∂R

∂x1

∂x1
∂η

+ ∂R

∂x2

∂x2
∂η

+ ∂R

∂x3

∂x3
∂η

∂R

∂ζ
= ∂R

∂x1

∂x1
∂ζ

+ ∂R

∂x2

∂x2
∂ζ

+ ∂R

∂x3

∂x3
∂ζ

.

And thus, we may write [
∂R
∂x1

∂R
∂x2

∂R
∂x3

]
J =

[
∂R
∂ξ

∂R
∂η

∂R
∂ζ

]
. (2.16)
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Multiplying with the inverse of the Jacobian, J−1, from the right and taking the transpose on
each side of the equation finally yields

∂R
∂x1
∂R
∂x2
∂R
∂x3

 = J−>


∂R
∂ξ
∂R
∂η
∂R
∂ζ

 .
By successfully placing these expressions in the matrix B, we may finally write

kepq = e>i
∫

Ω̃e
B>a CBb|J1||J2| dΩ̃ ej .

By carefully sequentially placing all values for a, b = 1, . . . , nen into the matrix B we can compute
the whole local stiffness matrix in one go by

ke =
∫

Ω̃e
B>CB|J1||J2|dΩ̃.

The integrals is approximated with quadrature rules. If we want to approximate the integral∫
Ω̃
g(ξ̃, η̃, ζ̃) dΩ̃

the approximation by Gaussian quadrature is given by

∫
Ω̃
g(ξ̃, η̃, ζ̃) dΩ̃ ≈

nq∑
q=1

ρqg(ξ̃q, η̃q, ζ̃q),

where nq are the number of integration points, and (ξ̃q, η̃q, ζ̃q) and ρq are given quadrature points
and weights, respectively.

A somewhat similar procedure as shown above is needed to approximate the surface integral
in (2.15). The full expression will depend on which part of the surface we integrate over. As an
example, consider integrating over a surface where η = 0. As for the local stiffness matrix, we
can compute the corresponding contribution to the load vector in one go as follows

f e =
∫

Γ̃e
N

[
R>

∣∣∣
η=0

h1 R>
∣∣∣
η=0

h2 R>
∣∣∣
η=0

h3

]>
|J1||J2| dΓ̃

where

R> =
[
R1 R2 . . . Rnen

]
,

J2 = 1
4(ξi+1 − ξi)(ζi+1 − ζi),

J1 = det(J),
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and

J =

∂x1
∂ξ

∂x1
∂ζ

∂x3
∂ξ

∂x3
∂ζ

 =
[
P ′1 P ′2 · · · P ′nen

]


∂R1
∂ξ

∂R1
∂ζ

∂R2
∂ξ

∂R2
∂ζ

...
...

∂Rnen
∂ξ

∂Rnen
∂ζ

 .

Here P ′i contains the x1 and x3 component of the control point Pi. The integral may now be
approximated by quadrature rules in two dimensions.

It is very important to note that the global stiffness matrix is very sparse. Not only is it a
huge advantage in MATLAB to have the matrix in sparse format when solving the linear system,
but also when assembling the matrix. If the matrix is made sparse only after assembly, then the
initialization would require MATLAB to allocated place for a full stiffness matrix. This is very
memory consuming and should be avoided if one wants to run the program with many degrees
of freedom. A matrix in sparse format contains 3 columns; the first two represent the indices in
the matrix and the third column represent the corresponding value. A way to do this is to first
construct these three columns in three arrays. By noting that each element stiffness matrix has
[3(p+ 1)(q + 1)(r + 1)]2 number of components, we initialize the arrays by the following.

sizeOfk_e = (3*(p+1)*(q+1)*(r+1))^2;

spIdxRow = zeros(1,sizeOfk_e*noElems);

spIdxCol = zeros(1,sizeOfk_e*noElems);

values = zeros(sizeOfk_e*noElems,1);

For each element, the element stiffness matrix is then added in the following way.

for i = 1:3*nen

idx = (1:3*nen)+sizeOfk_e*(e−1)+(i−1)*3*nen;
spIdxRow(idx) = sctrB;

spIdxCol(idx) = ones(1,3*nen)*sctrB(i);

end

values(sizeOfk_e*(e−1)+1:sizeOfk_e*e) = reshape(k_e, sizeOfk_e, 1);

Note that we do not here sum overlapping element matrices, but this is automatically done
when the sparse function is called in MATLAB.

K = sparse(spIdxRow,spIdxCol,values);

That is, there will be index combinations which will repeat and therefore this method would
require a lot more memory. The other obvious method is simply using

K(sctrB,sctrB) = K(sctrB,sctrB) + k_e;

which typically results in the MATLAB warning “This sparse indexing expression is likely to
be slow”. Experimentally we observe that the other method is 5 times as fast. In [6] it is
described how one could optimize the assembly, and in [7] we find theory around efficiently use
of quadrature for NURBS. This is however outside the scope of this project, and is therefore not
included.
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2.5 POST-PROCESSING

The visualizations is done in Paraview. Typically we create so called .vts files directly from
MATLAB, and let Paraview do the illustrations from here.

We print the nodes, the displacement and every component of the stress for each node into
such files. In addition we callculate the von Mises stress given by

σv =

√
(σ11 − σ22)2 + (σ22 − σ33)2 + (σ11 − σ33)2 + 6(σ2

23 + σ2
13 + σ2

12)
2

which we shall use throughout the report in the visualizations.

One must make a grid in the classical FEM style in order to visualize the result. The mesh is
simply created by finding the physical coordinates for each physical element. Moreover, for each
corner of an element in the parametric space, the displacement and the components of stress
can be calculated. Using the guide in [8], the file writing then follows by looping through each
element and write data from each of the 8 corners each time.

2.6 ERROR ANALYSIS

It is always important to present some numerical evidence that the implementation is correct.
This is typically done by finding an analytic solution and analyze the convergence of the numerical
solution towards this analytic solution. Let the minimal order of the NURBS basis be given by

k = min{p, q, r}

and let the maximal diameter of the elements (in the parametric space) be noted by h = hmax.
In the error analysis we shall start by the simplest open knot vectors. That is, for p = 2 we
have Ξ = {0, 0, 0, 1, 1, 1}, such that |Ξ| = n+ p+ 1. In three dimensions we then have h =

√
3.

Generally we have

h =
√

3
n− p

where we assume that the polynomial order is equal in all directions and we refine uniformly.
The energy norm is defined by

‖u − uh‖E =
√
a(u − uh,u − uh)
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where we compute the bilinear form by

a(u − uh,u − uh) =
∫

Ω
ε(u − uh)>Cε(u − uh) dΩ

=
∫

Ω

[
ε(u)− ε(uh)

]>
C
[
ε(u)− ε(uh)

]
dΩ

=
nel∑
e=1

∫
Ωe

[
ε(u)− ε(uh)

]>
C
[
ε(u)− ε(uh)

]
dΩ,

using the same technique with transformation to the parent element for integration with
quadratures. Thus, we need to compute ε(u) in order to do the error analysis.

In [9] we find the following estimate

‖u − uh‖E ≤ Chk

where a quasi-uniform mesh refinement has been assumed. The constant C is among other
things dependent of the transformation from the parametric space to the physical space. It is
not however depending on h. So as h become smaller, we expect the convergence to be of order
k. Of course, the analytic solution (and then also the norm) should be independent of h, so we
shall divide by ‖u‖E to normalize the error.

We want to do an error analysis with an analytic solution and a geometry which is to some
extent similar to what we shall use when analyzing the flex of skis. Analytic solution (with
corresponding data) on complex domains is in general hard to find. We shall restrict our self to
a domain given by

Ω = (0, wx)× (0, wy)× (0, wz)

where wx, wy and wz is the width in x, y and z direction of the beam, respectively. In the
following we shall present several analytic solutions with corresponding illustrative plots and
convergence plots. In the first two cases we choose these three parameters, such that the domain
looks like a plank in a way that wx > wy > wz. In all test cases we want to construct solution
which have homogeneous Dirichlet boundary conditions at x = 0. The boundary conditions
corresponding to each solution and the analytic expression for ε(u) can be found in Maple files
listed at

http://org.ntnu.no/skimodeling/maplefiles.

One of the simplest example that comes to mind is the solution

u =


0
x

0

 (2.17)

which is plotted in Figure 2.1. Of course, such linear solution is already in the search space
Sh, so we should expect the error to be near machine epsilon. And as we can see from the
convergence plot given in Figure 2.3a this is indeed that case. Here the error is more likely to
originate from the approximation in quadrature rules.

http://org.ntnu.no/skimodeling/maplefiles
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Figure 2.1: Plot of the analytical solution given by (2.17) (a scaling factor 0.2 is used on the displacement).
The transparent plank is shown as a reference to the displaced plank which is colored with von Mises
stress. Do not be fooled by the different coloring of the von Mises stresses. There is only one nonzero
stress component, namely σ12 = 1

2
E

1+ν , which is constant throughout the domain. The different coloring
comes from machine precision.

Figure 2.2: Plot of the analytical solution given by (2.18). The transparent beam is shown as a reference
to the displaced box which is colored with von Mises stress.

A more complex solution is given by

u =


1
5xy(2ν2x2 − 6ν2z2 − 4νx2 + 15νz2 − 6z2)

1
10x

2(νx2 − 3νz2 − 2x2 + 6z2)
−3

5x
2yz(ν − 2)

 . (2.18)

The plot of the solution is shown in Figure 2.2. The analysis is done with second order NURBS,
so since the analytic solution has a third order polynomial in the x direction, the solution is
not in the search space Sh. The convergence plot is presented in Figure 2.3b. The order of
convergence is not impressive in the beginning, but it get’s closer to the expected second order
of convergence as the element size get’s smaller. This is probably due to the constant C, which
we shall present evidence for in the next case.

A more regular domain would be to choose wx = wy = wz = 1, i.e. a cube. All though we
have not presented so much theory on the case f 6= 0 we shall present this case on the remaining
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(a) Convergence of the solution in 2.17.
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(b) Convergence of the solution in 2.18.

Figure 2.3: Plot illustrating that linear solutions are already in the solution space to the left and a plot
showing second order convergence to the right.
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Figure 2.4: Convergence of the solution in 2.19.
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(a) The box is colored by von Mises stress.

0.1259 0.1995 0.3162 0.5012 0.7943
10

−4

10
−3

10
−2

10
−1

10
0

‖
u
−
u

h
‖
E

‖
u
‖
E

hmax

Energy norm using k = 2
Referance line with slope 2

(b) Plot showing the convergence in the energy norm.

Figure 2.5: Plot of the analytical solution given by (2.20) with corresponding convergence plot of with
different NURBS order.

three cases. For simplicity we construct the solution such that they are zero on the boundary of
the cube. That is, we only have homogeneous Dirichlet boundary. Consider the solution

u =


x(x− wx)y(y − wy)z(z − wz)
x(x− wx)y(y − wy)z(z − wz)
x(x− wx)y(y − wy)z(z − wz)

 . (2.19)

It does indeed satisfy the conditions with a rather ugly resulting function f (the expression for
this function is in fact so complex that we do not even bother to include it in the appendix).
Once again, since this solution only has degree two for each polynomial in each of the spatial
direction, the solution is thus an element in the search space Sh, so we should expect the error
to be close to machine epsilon again. As we can see from Figure 2.4 this is indeed the case.

By multiplying the solution in (2.19) by another factor x,

u =


x2(x− wx)y(y − wy)z(z − wz)
x2(x− wx)y(y − wy)z(z − wz)
x2(x− wx)y(y − wy)z(z − wz)

 , (2.20)

we get a solution which should not be in the search space Sh. The condition on the boundary
does of course still hold, but now we have an even more complex function f . The displacement
of the cube is not so illustrative, rather, we cut of a part of the cube such that we can see
the von Mises stress at a plane inside the cube as well. This plot is given in Figure 2.5a. The
convergence plot is given in Figure 2.5b, and we here observe instantaneously convergence of
second order. The finale example is presented just to illustrate that we have the same type of
convergence when Neumann boundary condition is implemented. We plot the same analytic
function in (2.18), but here we choose wx = wy = wz = 1. The resulting plots are given in
Figure 2.6 and Figure 2.7.

All of the discussed solutions have been polynomial solution, and whould thus potentially be
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Figure 2.6: Plot of the analytical solution given by (2.20). The transparent box is shown as a reference
to the displaced box which is colored with von Mises stress.
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Figure 2.7: Plot showing the convergence in the energy norm.
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(a) The box is colored by von Mises stress.
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(b) Convergence in the energy norm.

Figure 2.8: Plot of the analytical solution given by (2.21) with corresponding convergence plot of with
different NURBS order.

in the solution space Sh if we elevate the order of the NURBS. Thus, the solutions presented so
far does not fit so much for analysis on the order elevation of NURBS. A trigonometric solution
given by

u =


sin
(

4πx
wx

)
sin
(

4πy
wy

)
sin
(

4πz
wz

)
sin
(

4πx
wx

)
sin
(

4πy
wy

)
sin
(

4πz
wz

)
sin
(

4πx
wx

)
sin
(

4πy
wy

)
sin
(

4πz
wz

)
 , (2.21)

will also satisfy homogeneous Dirichlet boundary conditions at the boundary. The resulting plots
are given in Figure 2.8a and Figure 2.8b. In the convergence plot, we illustrate the different
convergence rates by eleviating the NURBS order. It should be noted that the convergence is
slightly better than hk.



Chapter 3

MATERIALS AND THEIR PROPERTIES

The skies we are using are designed and made by Endre Hals, the creator of the flex-test for
alpine skis in Fri Flyt. The cross section showed in Figure 3.1 illustrates the different materials
from which a ski is made. The following list includes more detailed information:

• Core: The core is made of laminated wood with aspen in the center to save weight and
ash at the edges for added stiffness. Endre Hals has cut and glued the core in such a way
that the properties and faults in the wood will be symmetrical about centerline along ski.

• Composites: The composites that encase the wooden core are either fiberglass or carbon
fiber. This layer enhances the stiffness in the skis, with very little added weight.

• Base: The base is the contact point between the ski and the snow and protects the core
from water and damage at the same time as it provides less friction.

• Steel edge: At the edges there will be installed steel bands to increase the carving capabilities
and make the skis more durable.

• Protectiv plastic: This layer is on top of the ski to protect the core and compsit from
damage. It is also usually decorated in elaborate graphics.

All these materials are glued together with epoxy. The dimensions and composition of these
materials defines the properties of a complete ski, and is hence an essential aspect of our project.

The different materials have different properties, both regarding their stiffness and tempera-
ture dependencies, but also all the way down to material direction variations. In the following,
we will define our approach to each material’s properties.

Steel edge
Base

Composite
Ash

Composite
Protective plastic

Aspen

Figure 3.1: Cross section of modeled ski.
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3.1 WOOD

Wood is a living material and the properties differ from piece to piece. Its properties are also
dependent on the relative humidity. Especially aspen is a seldom used wood type in structures,
and data regarding the properties are not easily available or does not exist at all. Another
complicating element is the fact that wood is not isotropic, but cylindrically orthotropic. This
means that the material has different properties in axial, radial and tangential direction. To
get the mechanical properties right, we have conducted a set of tests of our own design. The
test procedures needed to establish the full elasticity matrix for any wooden material is both
far too complex and too expensive to conduct within the limits of this project, but we solved
this problem in another manner. Since our mathematical code only need to be able to represent
two specific bending cases, we assumed that if we tested the material under the same conditions
as the data extracted would be used to calculate, we could use the measured material stiffness
from these test, and thence assume isotropy. The idea was discussed with professor Odd Sture
Hopperstad, and together we concluded that this approach would provide good accuracy in the
properties.

Hals contributed with two examples of wooden cores, on which we could perform our tests.
Hals tests his skis in a cantilever bending test and a cantilever torsion test. Our replication of
these tests is described below. Test 4 extends beyond what we need to establish the elasticity
matrix, but will give necessary information about the stiffness of the complete ski, so that we
can compare the final results from our model with a proper set of laboratory data.

TEST 1

The wooden cores were fixed using two clamps about 15 cm apart. The load was applied using an
aluminum plate to evenly distribute the load across the width of the cross section. In the plate
we had drilled two holes so that we could hang a platform from, on which we placed weights, see
Figure 3.2. To even out and get rid of possible mistakes we applied five different loads three
times at three different places on both the front end and back end of the two cores. In every
one of the different load cases the deflection was measured with a linear variable differential
transformer (LVDT) 100 mm from the clamped end.

TEST 2

In the second test we wanted to find the shear modulus of the cores. To do that we used the
same platform as in Test 1, but now we applied the load to the edge of the core to create a
torsion moment, and then measured the deflection on each side of the core using two LVDTs,
see Figure 3.3 and Figure 3.4. The difference in deflection was used to calculate the angle. The
angle can then be used to calculate the shear-modulus.
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Figure 3.2: Test setup for the deflection of the wooden core

Figure 3.3: Test setup for the rotation of the wooden core
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Figure 3.4: Rotation test of completed ski

TEST 3

After both cores were tested, the cores were cut pieces about 40x2 cm so that we could use the
same procedures as in test 1 and 2, with a small exception; the pieces where to narrow to use
two LVDTs to measure the angle. Instead we used an electronic level, which is not nearly as
accurate as the LVDTs. These tests will then give us accurate E-modulus, but will make for an
uncertainty around the shear modulus.

TEST 4

Finally we performed both bending and torsion tests on a complete ski (Figure 3.4). The set up
for these two tests is described in subsection Test 1 and Test 2.

3.1.1 CALCULATIONS

Given our simple test set up, we are able to find an analytical expression relating the material
stiffness and the measured deflections and rotations. The method used to find these expressions,
the unit load method, are based on beam theory and the principle of virtual work. Since the tests
involves small loadings, and consequently small displacements, we can assume that all outer work
is conserved as elastic strain energy. By this, we will assume that the displacement produced
by two loadings are independent of the loading sequence. We will illustrate the derivation of
our expressions with basis in the cantilever bending case. Superposition, combined with the
assumption of sequence independence yields that we can combine two load cases as showed
in Figure 3.5. This represents a virtual unit load combined with the known actual loading,
producing an unknown virtual displacement combined with the known actual displacement.
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Note that all variables noted with a tilde are virtual quantities.

Figure 3.5: Superposition of load cases

By the conservation of work we obtain that the internal and external work must be of equal
size; We = Wi. This can further be expressed as

∫ ∆+∆̃

0
(F + 1̃) dy =

∫
V

∫ ε+ε̃

0
(σ + σ̃) dε dV ,

where we evaluate the integrals, and get

F∆ + F ∆̃ + 1̃∆ + 1̃∆̃ =
∫
V
σε+ σε̃+ σ̃ε+ σ̃ε̃ dV .

Since We = Wi for all subcases, we can split the equation into four independent equations, and
keep the one containing the wanted information, namely the one combining real displacement
with our virtual unit load

1̃∆ = ∆ =
∫
V
σ̃εdV .

From Hook’s law we find the expression for the strain ε

ε = σ

E
,

where the normal stress σ is given by
σ = M

Iz
y.

By this, we reach the expression for displacement

∆ =
∫
V

(
M̃

Iz
y

)(
M

EIz
y

)
dV ,

where the moments, the modulus of elasticity and the second moment of inertia all are dependent
of the length coordinate only. This can be rewritten as

∫
V

M̃M

EI2
z

y2 dV =
∫
L

M̃M

EI2
z

∫
A
y2 dA dx,
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where
Iz =

∫
A
y2 dA.

Finally, we reach our explicit expression for the displacement

∆ =
∫ L

0

M̃M

EIz
dx.

By further manipulations, we have our expression for the elasticity modulus

E =
∫ L

0

M̃M

∆Iz
dx.

After going through the same procedure using a virtual unit rotation, we reach the corresponding
expression for the shear modulus

G =
∫ L

0

T̃ T

θJ
dx,

where J denotes the polar second moment of area.
Since both the height and the width of the cross section varies along the length, these

variations will have to be expressed. The variations over our relatively short distance of interest
are small, and is approximated as linear

h(x) = h0 ·
(

1 + x · (h1 − h0)
L

)
(3.1)

b(x) = b0 ·
(

1 + x · (b1 − b0)
L

)
. (3.2)

To calculate the shear modulus we need the polar moment of inertia, J . For a rectangle, like our
cross section, we use J = k · (b)3 · (h), where we calculate k by using the following formula [11]

k = 1
3

1− 192
π5

b

h
·

∞∑
n=1,3,5,..

1
n5 tanh

(
nπh

2b

) . (3.3)

With an expression for both elasticity and shear modulus we wrote a script in MATLAB to
solve the integrals for the 947 measurements that were done (Appendix B, Appendix C).

3.1.2 TEST RESULTS

Based on discussions with the laboratory personnel, we have found our final values for the
wanted quantities by the mean value of the mean values from each separate section tested. The
results are listed in Table 3.1. We also did some tests of the finished skis and got a stiffness of
102.16N/mm, 30cm behind setback as it would give us most reliable results.
As we can see from our test results, most of the shear-stiffness comes from the ash. As both
the E-modulus and the shear-modulus resemble the tabled versions of the properties [12], our
test results seems credible. As we see from Table 3.1 each wood type have lower stiffnes than
the core as a whole. The reason for this could be that the glue that was used to fuse the core
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Table 3.1: E- and shear-modulus of wood

E-modulus [MPa] Shear-modulus [MPa]
Wood core 11 603 950

Ash 11 046 857
Aspen 11 030 402

together was cut out in the process of making the pieces. Another source of error could be the
measuring process, as the tests are extremely sensitive.

An effect of the orthotropic properties of wood which was not foreseen, was that the isotropic
relation between Poisson’s-ratio, E-modulus and shear-modulus no longer holds. After a short
consultation with professor Malo we decided to use the E- and shear-modulus as found, and use
ν = 0.05 as the Poisson’s-ratio in the elasticity matrix shown in Equation 3.4.

C = E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 G 0 0
0 0 0 0 G 0
0 0 0 0 0 G


(3.4)

3.2 COMPOSITES

The two types of composites we will be using are fiberglass and carbonfiber. Neither materials are
isotropic, but anisotropic. Hals uses both materials in the production of his skies. Carbonfiber is
a newer and more expensive material, but as shown in Table 3.2 it is both lighter and stronger
[13, 15].

In the skis tested in Test 4, Hals used carbon fiber. After som research we found this elasticity
matrix [14] (with every value in GPa), when the fibers are laid with 0◦ angle to the lenght axis

C =



246 180 180 0 0 0
11.69 22.30 16.66 0 0 0
11.69 16.66 22.30 0 0 0

0 0 0 2.82 0 0
0 0 0 0 7.1 0
0 0 0 0 0 7.1


,

and after we had used the transformation matrices we have this for sheets laid at 45◦ angle to
the lenght axis
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C =



122.10 107.90 98.33 0 0 27.70
107.89 122.10 98.33 0 0 27.70
14.17 14.17 22.30 0 0 −4.97

0 0 0 4.96 2.14 0
0 0 0 2.14 4.96 0
98 98 81.67 0 0 38.30


.

At a time these matrices were found, it was no time to include them in the IGA. The values
that were used is found in Table 3.2, and is based on a much simpler approach, namely that the
composites are isotropic.

Table 3.2: Material properties of carbon fiber and fiberglass

Carbon fiber Fiberglass
E-modulus 242 GPa 72 GPa

ν 0.3 0.22
Specific gravity 1.81 g/(cm)3 2.52 g/(cm)3

3.3 EDGES

The placement of the steel edges leads to large stresses when the skies are exposed to bending.
The stiffness of the edges will lead to less deformation of the skies and therefore less stress in
the other components. If the edges had been a softer material it would have led to greater
deformations and larger stresses in the other materials.

Table 3.3: Material properties of steel edges

Steel
E-modulus 210 GPa

ν 0.3

3.4 BASE

The material used in the base is Ultra High Molecular Weight Polyethylene (UHMWPE) that
has very good friction properties, but mostly add weight, and will have very little impact on
the stiffness of the ski [16]. UHMWPE is not an isotropic material, but we decided to use the
isotropic material property as an approximation since the degree at which this affect the analysis
is so small (due to low material stiffness). We then use the following properties.



3.5 PROTECTIV PLASTIC 35

Table 3.4: Material properties of UHMWPE

UHMWPE
E-modulus 0.72 GPa

ν 0.46
Specific gravity 0.94 g/(cm)3

3.5 PROTECTIV PLASTIC

Hals uses a polyester-based material as the top layer. The producer of this material do not want
to share the mechanical properties, so we assumed the data in Table 3.5 which we found in [17].
As the base, this approximation will have very little impact to the result due to the low material
stiffness. Also here isotropic material property is assumed.

Table 3.5: Material properties of polyester

Polyester
E-modulus 3.65 GPa

ν 0.48





Chapter 4

CAD AND GEOMETRY

Through the course of this project several methods for generating the digital representation of
the geometry have been used. The main reason for this is that the link between CAD and IGA
has been far harder to establish than what was initially assumed. Our first plan was to use the
output from a common CAD tool, Siemens NX8,5. This was put to a halt because it simply
proved to be too difficult. However, it was put back on track when we reached out to Kjetil
Andre Johannessen, who decided to help us. The main thing he found out, was that he could
use the output from NX to generate the model volume as a whole only, not including its internal
subsections. From this point, the role of our 3D model generated in NX sank from being generic
input material for the analysis, to being nothing but a visual effect. Toward the ending of the
project, Kvamsdal engaged SINTEF employee Arne Morten Kvarving to help us. Kvarving set
out to make what would essentially be a specialized CAD program, which were to produce an
output format tailor-made for our analysis. The idea of the program was that it should be
generic, which means that it should be able to represent any ski of the topology presented below,
by running a set of defining dimensions. This program is a work in progress, and will not be
complete within the time limits of this project. This leads us to our last alternative, to model a
much simpler representation of the ski in MATLAB. This ski will be a poor representation of
the real thing, but will introduce all the different difficulties we can expect from an exact model.
This way, we can still test our mathematical programs on relevant geometry, even if it may not
produce useful results.

Even if the geometry used in our tests is not that close to reality, the computer programs
written have been designed to handle all variants of skis within the topology of Hals’ skis.
Further, the program Kvarving is working on will produce skis of the same topology. Hence, for
the sake of continued work, the geometry of the skis will be defined.

4.1 GEOMETRY DEFINITION

The geometry will be defined in four steps, found in the four following sections. First, we define
the cross section. Then, we define the guides to sweep the cross section along. One guide is the
2D side view, the other is the 2D top view of the ski. Finally, the cross section is swept along the
guides to span the full volume of the model. Note that the parameters given in the figures below
represent all the needed data to fully define a unique ski, when combined with the constraints
listed in each section. Thus, these parameters will form the input for Kvarvings program.
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Steel edge
Sole

Lower composite
Ash

Upper composite
Protective plastic

Aspen
Symmetry

Figure 4.1: Cross section of simplified geometry of ski.

tan(θ) ·ms

θ

Figure 4.2: Cross section geometry

4.1.1 CROSS SECTION

As the previous chapter suggests, a arbitrary cross section of a ski consists of several different
materials, as can be seen in Figure 4.1. These materials divide the cross section into many
subsections, and will have to be defined geometrically. Figure 4.2 show the constraining
dimensions. Note that the highly detailed corner indicated with a dotted square is dimensioned
in Figure 4.3.

4.1.2 SIDE VIEW DEFINITION

The side view of the ski is defined in two steps. First, the base line, see Figure 4.4. All figures
displays the ski with its front tip to the right. All transitions are constrained to preserve a
continuous tangent. The next step is to define the thickness profile. The thickness is measured
normal to the base line at the points indicated in Figure 4.5. Finally, the top line is interpolated
through all the thickness lines, this interpolation also has to preserve continuous tangents all
along the ski length, and has to be normal to the thickness at both ends.
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Figure 4.3: Closer view around the steel edge

Figure 4.4: Base line

Figure 4.5: Thickness profile
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4.1.3 TOP VIEW DEFINITION

Being symmetric about its length axis, we only need to define one half of the ski to fully constrict
the top view geometry. As before, all changes in curvature happens with continuous tangents.
The dimensions in Figure 4.6 gives most constraints, except one thing. The sharp finishing curves
in both ends are given by a tangent transition from the curve with given length and radius,
which ends normal to the symmetry line. Note also that the width defined is the narrowest point
on the ski, not counting the endings.

Figure 4.6: Top view geometry

4.1.4 SWEEPING OF CROSS SECTION ALONG GUIDES

Now that the 2D geometry is defined in two different views, these can be combined to produce a
3D shape constriction, or guides, along which the cross section is swept. The two 2D views are
combined by extruding each one in the direction normal to their drawing planes. The intersection
line between these will then be our 3D guide line. Figure 4.7 shows the guides with the cross
section in some different positions. Note that the figure only show half of the width, symmetry
defines the other half.

Note also, that only the wooden core changes height, and that both the steel edges, the ash
section and the outer aspen section remains of constant width as the total width changes. The
resulting geometry can be seen in Figure 4.8, the parameter values defining this ski can be found
in Appendix A.

4.1.5 SIMPLIFICATIONS IN NX MODEL

A couple of details have been left out from the cross section. First of all, a layer of thin plastic
foil separating the lower composite from the steel edges has been neglected. This is assumed
to have an imperceptible effect on the cross sectional bending and torsion stiffness. Likewise,
a slight curvature of the top surface is neglected, as it is only introduced in the physical ski
to make sure that no air is trapped when compressing the composites onto the wooden core.
Further, in the longitudinal direction, all length dimensions are measured straight horizontally,
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Figure 4.7: Sweeping cross section

Figure 4.8: Resulting side view

Figure 4.9: Resulting top view

Figure 4.10: Resulting cross section with different materials.

rather than along the curvature of the ski. As an example, the ski defined by the values in
Appendix A, is 1.8766 meters long measured along its curvature, compared to 1.8700 measured
straight horizontally.

Our boldest assumptions are related to the composites, since these goes through some heating
and compression processes after applied to the wooden core. Hence, the final measures will vary
from one ski to the next, depending on how much of the mixture is impregnated into the core,
and how precisely the processes is conducted. After discussions with Hals, we agreed to assume
a final thickness corresponding to 75% of unprocessed thickness. Last, we will stress the fact
that the skis of interest are handmade, and will vary as such.
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4.2 MATLAB SKI GEOMETRY

The model created in MATLAB is created essentially by trial and error. One could first start
with a simple plank and then move around the control points, in order to have a ski which
(to some extent) resembles the ski made in CAD. The part of the control points defining the
thickness of the ski is made symmetric about the origin (setback) and varies as e−2(x· 2

L
)2 . All

other control points are chosen by trial and error in order to have a ski that to some extent
represents the the reality.

(a) Side view.

(b) Top view.

(c) Overview.

Figure 4.11: The modeled ski in MATLAB. All units are in meters.

When the surface of the volume has been made, knots may be inserted to create different
materials in the ski. This will in practice be the extrusion of a cross section which we create
in the setback. The problem with such cross section extrusion is that all materials will vary
corresponding to the topology of the surface. That is, the height of the steel edge will decrease
from the origin and the width will vary as the carving of the ski. The cross section in the origin
is the most correct topology, compared with the original ski. But even here, simplifications has
been made. This cross section is illustrated in Figure 4.12, and we can see that the curved part
of the steel edge has been removed. Moreover, the sidewalls is composed by straight lines at a
4◦ angle. The parameters should otherwise be the same.

Figure 4.12: The simplified mesh of the cross section used in MATLAB.
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THE FLEX COMPUTER

With the IGA library in our arsenal, we are now ready to tackle more complex geometry and
even compute flex curves on skis. We find the flex by measuring the displacement given by an
applied force. The stiffness is found by the applied force divided by this displacement. Ideally
one should take the measurement where the force is applied, but as we can see from Figure 5.1,
the measurement is made between the clamped area and the area of applied force. In the end
we would like to compare the data from experiments with our model, so we shall also take
the measurement between the clamped area and the force area. To obtain a flex curve several
measurement along the ski is taken, typically with 100 mm separating each measurement. The
measurement is taken 100 mm from the clamped area and the applied force is taken 120mm
from the clamped area. We shall use 2 mm as the force width, and will as Endre Hals take 16
measurements (8 on each half of the Ski) to produce the flex curve which is found by interpolation.
In Figure 5.2 the flowchart of the program is shown. Only an overview of the program will be
presented here. The code in it’s entirety may be found at

http://org.ntnu.no/skimodeling/isogeometric-analysis.

Figure 5.1: This image is taken at the workshop of Endre Hals, and shows the device used to get data
for computing the stiffness.
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Start

Loop through flexpoints

Get data from CAD

Insert Knots

Generate IGA 3D mesh

Build stiffness matrix
and loading vector

Apply Dirichlet
boundary conditions

Solve KU = F

Compute stiffness in material

Plot of flex curve

Stop

Figure 5.2: Flowchart of the flex computing program. The loop in green actually consist of two loops;
one outer loop which loops over the front half of the ski and the back half of the ski and the inner loop
loops through the number of flexpoints on the given half (typically 8, such that we get 16 flex points in
total).
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z

Measure line

Applied force

Clamped domain

Figure 5.3: Sketch illustrating how the flex is computed on a simple plank. Note that the force width
(in x-direction) will be much smaller, it is here chosen larger only for visualization purposes.

The program consist of a for loop which loops through the 16 points of measurements, call
them flexpoints. When this is done, the program may plot the flex curve based on this data
set using spline interpolation. The first step in the for loop would be to get data from CAD.
This part is included in the for loop just for convenience. If it was not, we would have to store
the control points in a separate array since this will change when inserting knots. When we
insert knots we first create repeated knots at the end of the clamped domain such that we have
interpolation here (that is, we insert knots into Ξ such that we have p knots in total at the
clamped line). Then we insert two further knots into Ξ for the force area; one corresponding to
the line at which the force starts, and the second where it ends. Again, this is only done if such
a knot does not already exist in the knot vector. We do not need repeated knot in this case,
since this knot insertion is only to get exact boundary integration when applying the loading.
From here, we may refine the mesh and elevate the order of the NURBS as we like. We do a
mesh refinement by inserting knots which is not already in the knot vector. Then, the standard
procedure of IGA follows, namely create mesh, build stiffness matrix and loading vector, applying
Dirichlet boundary conditions and solving the linear system. After this, the stiffness in the
material may be computed. Since we not necessarily have knots at a given flexpoint, we need to
create a functions which first finds the coordinates in the parametric space which corresponds to
the physical coordinates of the flexpoint, and then another function which evaluates

u(x, y, z) =
nml∑
A=1

RA(ξ, η, ζ)UA

at this point. Obviously we will only need the y-component of the resulting vector for the
calculation of the stiffness.

We should provide some numerical evidence that the program is correct. Consider the sketch
in Figure 5.3. It shows a simple plank with homogeneous material (wood say, with E = 13 · 1013

and ν = 0.3). Since we do not know the analytic solution to this problem, we can not plot the
energy norm. What is typically done is a plot of the displacement at a given point as a function
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Figure 5.4: Plot of the convergence in displacement.

of the degrees of freedom. The resulting plot should then converge towards the analytic value
for the displacement at this location. In this experiment we let p = q = r = 3. And we refine
homogeneous in all directions. For the ξ direction we only refine between the clamped area to
the end of the force area. Outside this area, there is not so much information to be gained by
refining. In Figure 5.4 we have the resulting plot. The convergence towards a specific value
seems to be rather slow (the relative difference between the last two point is at 0.29%), so it
does not yield conclusive evidence that the implementation is correct.

We shall finally present evidence that the model converges to the right answer also with
different materials. Consider the same test set up as in the previous example only with different
materials inserted. This is done by inserting repeated knots where separation of materials is
wanted and then create different elasticity matrices (different values for ν and E) depending on
which element is evaluated. In Figure 5.5, yi and zi represent the physical coordinate at which
we need to insert such repeated knots. Since the inverse of the function, which maps parametric
coordinates to physical coordinates is unknown, we have to make a search function which given
a physical coordinate, the approximation of a parametric coordinate is returned. We may do
this by a binary search algorithm. Since we want to define the cross section in setback, the value
for ξ can first be found before knot insertion. When we want to insert knots corresponding to
the coordinate yi, we only need to search for ηi since we could set ζ = 0.5. Correspondingly, if
we want to insert knots corresponding to the coordinate zi, we only need to search for ζi since
we should set η = 0 (the coordinates yi is given at the bottom of the ski).

Now when the topology is defined, we may start refining. We shall here not choose homoge-
neous refinement due to the different sizes each material occupy. Intuitively one should refine
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Figure 5.5: Magnified left part of the cross section in Figure 4.1 in the top figure, and the corresponding
(even larger magnified) block insertions. One of the refinement is to skip the circular part of the steel
edge. This is done by using the red dotted line instead of the green dotted line. If the green line had
been chosen, far to much steel would have been added.

equally much in the interval [ηi, ηi+1] as [ηi+1, ηi+2] and correspondingly for the ζ direction.
Note that the vertical lines given in Figure 5.5 is somewhat misleading. Since the sidewalls of
the ski is not vertical (they have 4◦ angle with the vertical plane), the elements in the physical
mesh will also not be vertical (except a possible center line) as we can see from the different
physical meshes in Figure 5.6.

In Figure 5.7 we plot the resulting convergence plot of the displacement. The relative
difference between the last two point is at 0.7%. This simulation took several hours, so any
further data of a more refined mesh was not obtained.
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(a) Mesh 1: The original mesh without refinement.

(b) Mesh 2: One knot inserted between each knot interval in both η and ζ direction.

(c) Mesh 3: Three knots inserted between each knot interval in both η and ζ direction.

(d) Mesh 4: Seven knots inserted between each knot interval in both η and ζ direction.

Figure 5.6: Different mesh of the cross section.
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Figure 5.7: Different materials: Plot of the convergence in displacement.



Chapter 6

RESULTS AND DISCUSSION

Introductorily we want to mention that since the laboratory testing of the complete ski given to
us by producer Hals has been completely under our control, we choose these as our main basis
for comparison, not the data from Hals’ own tests.

Our measured stiffness of the ski at 30 cm behind setback is 102.16 N/mm. The same point
in our model gives a stiffness of 70.72 N/mm. Considering the approximated geometry, and all
the rest of our approximations, we are very pleased with the result. Still, it should be noted
that the high amount of assumptions makes it possible that different assumptions will cause
errors which cancels each other out.

Further, if we consider the stress over the cross section in the same point (30 cm behind
setback), we can extract some interesting details. Figure 6.1 shows the von Mises stress over parts
of the cross section at the point mentioned. The first thing to notice is the clear discontinuity
over material borders. The steel edges and composites have the by far highest material stiffness,
which is captured well by the colour plot. The wooden core represents a big part of the area,
but with the moderate material stiffness it is clear that the contributions to the total stiffness is
rather limited. If we look at Figure 6.2, where the stress span captured by the colours is reduced,
we can clearly see the variation over the height. This variation is from beam theory expected to
be linear, and although it might look right in the figure, we can not firmly conclude whether
this is the case here. We also see that the top plastic and the base represent very little stiffness
contributions. This also is nothing but expected, since the material stiffness of these components

Figure 6.1: Plot of von Mises stress. The black lines illustrates the grid.
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Figure 6.2: Another plot of the von Mises stress. Here, the colouring is set sensitive to a much narrower
interval, to emphasise the variation over the wooden core.

Figure 6.3: Plot of displacement in the area around the clamped end point and the force area. The
displacement plot is scaled by a factor 3.

are next to nothing compared to the stiffness of the composite sections and the steel edges.
Investigation of the deformed shape, seen in figure Figure 6.3, supplies further credability

to the model. Again we base or evaluation of the results upon beam theory, which predicts a
qubic variation of the displacement under a point loaded cantilever beam. As seen, we have
no deformation over the fixed area, whilst the free domain takes a shape which could be well
represented by a qubic variation. Beyond the loading area, the curvature of the ski should go to
zero, and as expected we see a linear continuation of the angle at the end of loaded area.

The one thing we see which may indicate some sort of error, is the high magnitude of the
stress we see in the two cross section figures. This is well beyond the yielding point of most
steels, and is clearly not a correct value. This may indicate that some of the softer materials in
the cross section, for instance the wooden core, have been assigned a too low material stiffness.
A higher stiffness in the softer parts would distribute the stress more evenly over the entire cross
section, and hence reduce the maximum value. This will also make the ski as a whole stiffer,
and since our representation seems to be about 30% below the real ski, this is not an unlikely
reason for the unexpected stress magnitudes.
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Figure 6.4: The resulting flex curve compared with the flex curve based on the experimental data from
Hals. Don’t be fooled by the apparent asymmetric appearance of the resulting blue curve. The topology
of the used ski is symmetric about the setback point (-10 cm), and the curve should therefore also be
symmetric. However, the point at 0 is not measured due to the loading procedure explained to us by
Hals, and if it were, it should have the same value as the value at -20 cm.

The resulting flex curve of the ski is given in Figure 6.4. Obviously it is not at all equal to
the one based on data from producer Hals, but at least the magnitude of the stiffness seems to
be of the same order. Here we would like to point out the fact that the test results from our
own data differ significantly from the data given to us by Hals. We do not posses all the details
about the loading mechanism used, but it is likely to be some misinterpretations behind the big
deviations.

It is important to note that throughout this report, several assumptions has been made. Each
will yield an error. Hopefully, these errors are all negligible. We list the following assumptions
below.

• We assume linear elasticity which only make sense for small displacements.

• We neglect the glue between materials. That is, we assume all materials are perfectly
attached to each other.

• Isotropic material property has been assumed for all non wood material. The wood material
is assumed to be simplified version of orthotropic.

Other sources for error can be found in

• The geometry approximations discussed in chapter 4.

• Error in measurements from Hals.
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• The results from our laboratory tests, discussed in chapter 3.

• The various sources for the parameter values for Young’s modulus (E) and the Poisson’s
ratio (ν) for the other materials.

• The Galerkin approximation done in the IGA analysis.

Where the geometry approximation arguably represents the biggest source of error.



Chapter 7

WEB PRESENTATION

One of the goals of the project was to make some details of the process, methods and results
available to the broader public and upcoming students at NTNU. To obtain easy readability, we
chose an online web presentation which can continue to exist for a period. The website can be
found at

http://org.ntnu.no/skimodeling/.

A general interest was to use up to date web tools, related software and design in order to help
create attention and enthusiasm for the project topic. Below we outline some details of the
configuration and its special components.

7.1 SETTING UP A CONTENT MANAGEMENT SYSTEM

Developing professional websites from scratch in 2014 requires a vast amount of time and
experience. With content requiring mainly only static pages, our backend structure of the
website could have been simplified greatly. However, using a dynamic content management
system (CMS) allows for rapid development and more fluid editorial aspects. Moreover, this
permits possible future online projects to build on the work relatively efficiently.

With a large volume of CMS providers, the choice of necessary and sufficient software can be
a puzzling decision. We settled on WordPress [18], which is a popular open source CMS with a
large user base. In addition, its modularity when it comes to plugins and extensive development
community were desirable properties.

7.2 DESIGN AND COMPATIBILITY ACROSS DEVICES

Given the time constraints and competence, it was not possible to create the frontend design from
bottom up. To compensate, we embraced and installed a free and complete WordPress-theme
from ThemeSmarts [19]. Some minor changes were made to suit the desired output.

A key property with regards to modern web designs is the notion of responsiveness [20]. With
an increasing number of devices and screen formats, websites should be able to scale properly,
or be responsive, and display customized versions on each device, whether it is a widescreen
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Figure 7.1: Display of the responsiveness of the website on a selection of devices. The image is generated
via a tool from http://ami.responsivedesign.is/. REMEMBER: UPDATE FIGURE WITH
FINAL WEBSITE

computer, a small mobile phone or a midsize tablet. In Figure 7.1 is seen how the website neatly
adapts to different screen sizes. Both the menu, content columns and images change in order to
give the reader a proper view.

DISPLAY OF LATEX-CONTENT

In discussing chapter 2 online, displaying LATEX-content in an elegant way was of great importance.
Via a WordPress-plugin [21] utilizing a web service called QuickLaTeX [22], it became
possible to publish raw LATEX-content without compromising quality. The plugin generates
cached images for rendering speed and even enables functionality such as equation referencing.

7.3 A 3D MODEL VIA THE x3dom FRAMEWORK

Since we were already making a 3D model for our analysis, it was useful to find a tool for
presenting it on the website. By exporting the CAD model to a file type known as Virtual Reality
Modeling Language (VRML), we found a way to display the 3D ski into a browser-understandable
format using the so-called x3dom1 framework [23].

1x3dom is pronounced «x-freedom».

http://ami.responsivedesign.is/
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The open-source x3dom-framework uses X3D data embedded in (X)HTML pages. Morover,
X3D is a data format used for representing 3D computer graphics, being the successor of VRML.
To this end, the VRML file had to be converted into an X3D file type, which then was exported
again into a HTML readable format. There were no loss of quality between the steps, and thus
the online 3D model is essentially the same as the one used in the CAD software.





Chapter 8

CONCLUSIONS AND SUGGESTED FURTHER WORK

Due to inconsistency with experimental data done by us and Endre Hals, the data from Endre
Hals was not chosen to validate results made from the modeling. All the sources of errors taken
into account, the modeled result came close to the experimental result. Still, some results deviates
from what was to be expected and we can not exclude the possibility of an implementation error.

As mentioned, the exact geometry is a work in progress, and to use this in the Flex Computer
would be the obvious next step. When everything seem to fit the experimental data, one should
be able to consider, to what extent each material contributes to the stiffness of the ski, and also
actually calculate the SFI. This way, one could really make use of the developed program. A
further study could then be to investigate what properties of a ski constitutes an ideal ski for a
given costumer.

The flex computing program is a rather heavy program to run. Many optimizations can
be done to decrease the computational time. This include implementing T-splines (such that
local refinement of the IGA code is possible), optimize the assembly process (as discussed) and
implement the code in C. The latter optimization should especially be done for the NURBS
implementation (which was done in [5]).
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Appendix A

PARAMETER VALUES FOR DISPLAYED SKI

(a) Cross section

Parameter Value Unit
st 0.001 m
skit 0.0006 m
skb 0.00715 m
skyb 0.0025 m
R 0.0004 m
bkt 0.000486 m
tkt 0.000486 m
tpt 0.0005 m
ms 0.01171 m
B 0.052 m
ysb 0.015 m
θ 4 Deg

msb 0.023 m

(b) Top View

Parameter Value Unit
Ltot 1.87 m
TFL 0.36 m
TFR 5 m
TBL 0.34 m
TBR 5 m
Wsb 0.052 m
SB 0.1 m
SR 25 m

(c) Side view

Parameter Value Unit
RFR 5 m
RBR 5 m
RFL 0.5 m
RBL 0.45 m
R2FR 0.8 m
R2FL 0.24 m
btRest 0.105 m
ftRest 0.115 m
bt 0.00192 m
bs 0.00701 m
fs 0.00687 m
ft 0.00184 m

Note that the parameters are listed under the view where it is introduced, and may well be
used in several views.
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Appendix B

LABORATORY TESTS

Table B.1: Test of E-modulus for wood core.

(a) Cross-section 1 front ski 1.

Test Weight Deflection
no. [kg] [mm]

1 0.869 0.079
2 1.184 0.094
3 1.499 0.117
4 0.869 0.06
5 1.184 0.081
6 1.499 0.102
7 1.453 0.1307
8 1.768 0.1705
9 2.083 0.1768

10 2.398 0.2173
11 2.713 0.2457

(b) Cross-section 2 front ski 1.

Test Weight Deflection
no. [kg] [mm]

1 1.453 0.2192
2 1.768 0.2741
3 2.083 0.3
4 2.398 0.3619
5 2.713 0.4251
6 1.453 0.1952
7 1.768 0.2747
8 2.083 0.2956
9 2.398 0.3436

10 2.713 0.3985
11 1.453 0.2147
12 1.768 0.2918
13 2.083 0.3139
14 2.398 0.3651
15 2.713 0.4213

(c) Cross-section 1 back ski 1.

Test Weight Deflection
no. [kg] [mm]

1 1.453 0.096
2 1.768 0.1408
3 2.083 0.151
4 2.398 0.1737
5 2.713 0.1939
6 1.453 0.095 37
7 1.768 0.1352
8 2.083 0.144
9 2.398 0.1693

10 2.713 0.187
11 1.453 0.094 48
12 1.768 0.1339
13 2.083 0.1415
14 2.398 0.1667
15 2.713 0.1958

(d) Cross-section 2 back ski 1.

Test Weight Deflection
no. [kg] [mm]

1 1.453 0.1592
2 1.768 0.2154
3 2.083 0.2425
4 2.398 0.2825
5 2.713 0.324
6 1.453 0.1497
7 1.768 0.1983
8 2.083 0.2192
9 2.398 0.259

10 2.713 0.3057
11 1.453 0.1364
12 1.768 0.1832
13 2.083 0.2141
14 2.398 0.2539
15 2.713 0.2975

(e) Cross-section 3 back ski 1.

Test Weight Deflection
no. [kg] [mm]

1 1.453 0.2286
2 1.768 0.2836
3 2.083 0.3322
4 2.398 0.3821
5 2.713 0.4345
6 1.453 0.2261
7 1.768 0.2811
8 2.083 0.3278
9 2.398 0.3777

10 2.713 0.4364
11 1.453 0.2103
12 1.768 0.2691
13 2.083 0.312
14 2.398 0.36
15 2.713 0.4232

(f) Cross-section 1 front ski 2.

Test Weight Deflection
no. [kg] [mm]

1 1.453 0.12
2 1.768 0.1478
3 2.083 0.1851
4 2.398 0.2166
5 2.713 0.2444
6 1.453 0.1067
7 1.768 0.1377
8 2.083 0.1623
9 2.398 0.1895

10 2.713 0.2255
11 1.453 0.1251
12 1.768 0.1573
13 2.083 0.1731
14 2.398 0.2008
15 2.713 0.2305
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(g) Cross-section 2 front ski 2.

Test Weight Deflection
no. [kg] [mm]

1 1.453 0.2097
2 1.768 0.2545
3 2.083 0.3019
4 2.398 0.3493
5 2.713 0.3954
6 1.453 0.1926
7 1.768 0.2432
8 2.083 0.2943
9 2.398 0.343

10 2.713 0.3997
11 1.453 0.2059
12 1.768 0.2425
13 2.083 0.2956
14 2.398 0.3392
15 2.713 0.3884

(h) Cross-section 3 front ski 2.

Test Weight Deflection
no. [kg] [mm]

1 1.453 0.2716
2 1.768 0.3398
3 2.083 0.408
4 2.398 0.4699
5 2.713 0.54
6 1.453 0.271
7 1.768 0.3436
8 2.083 0.4074
9 2.398 0.4718

10 2.713 0.54
11 1.453 0.2785
12 1.768 0.3385
13 2.083 0.3998
14 2.398 0.463
15 2.713 0.5305

(i) Cross-section 1 back ski 2.

Test Weight Deflection
no. [kg] [mm]

1 1.453 0.092 85
2 1.768 0.144
3 2.083 0.1446
4 2.398 0.1535
5 2.713 0.186
6 1.453 0.1086
7 1.768 0.1093
8 2.083 0.1421
9 2.398 0.1421

10 2.713 0.1516
11 1.453 0.033 47
12 1.768 0.054 32
13 2.083 0.1017
14 2.398 0.1086
15 2.713 0.1301

(j) Cross-section 2 back ski 2.

Test Weight Deflection
no. [kg] [mm]

1 1.453 0.0739
2 1.768 0.103
3 2.083 0.1402
4 2.398 0.192
5 2.713 0.2116
6 1.453 0.1383
7 1.768 0.1787
8 2.083 0.1983
9 2.398 0.2248

10 2.713 0.2653
11 1.453 0.1118
12 1.768 0.1541
13 2.083 0.1863
14 2.398 0.24
15 2.713 0.2564

(k) Cross-section 3 back ski 2.

Test Weight Deflection
no. [kg] [mm]

1 1.453 0.1863
2 1.768 0.2501
3 2.083 0.2855
4 2.398 0.3234
5 2.713 0.3859
6 1.453 0.1055
7 1.768 0.1547
8 2.083 0.2091
9 2.398 0.2741

10 2.713 0.3297
11 1.453 0.1585
12 1.768 0.2128
13 2.083 0.2943
14 2.398 0.3335
15 2.713 0.3771
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Table B.3: Test of shear-modulus for wood core.

(a) Cross-section 1 front ski 1.

Test Weight Deflection Deflection
no. [kg] [mm] [mm]

1 1.2302 0.2815 0.025 26
2 1.8602 0.4322 0.052 42
3 2.4902 0.58 0.069 48
4 3.2102 0.732 0.096
5 1.2302 0.2718 0.003 79
6 1.8602 0.418 0.0278
7 2.4902 0.5616 0.039 16
8 3.2102 0.704 0.058 74
9 1.2302 0.2734 0.015 16

10 1.8602 0.418 0.041 69
11 2.4902 0.5668 0.0517
12 3.2102 0.7149 0.072

(b) Cross-section 2 front ski 1.

Test Weight Deflection Deflection
no. [kg] [mm] [mm]

1 1.2302 0.36 0.052 42
2 1.8602 0.545 0.1074
3 2.4902 0.7323 0.1333
4 3.2102 0.925 0.189
5 1.2302 0.3555 0.058 74
6 1.8602 0.5417 0.1086
7 2.4902 0.73 0.1421
8 3.2102 0.9191 0.1832
9 1.2302 0.36 0.049 26

10 1.8602 0.5455 0.1074
11 2.4902 0.7355 0.1352
12 3.2102 0.921 0.175

(c) Cross-section 1 back ski 1.

Test Weight Deflection Deflection
no. [kg] [mm] [mm]

1 1.2302 0.1797 0.022 74
2 1.8602 0.2686 0.048
3 2.4902 0.3626 0.060 63
4 3.2102 0.4612 0.069 48
5 1.2302 0.1771 0.032 21
6 1.8602 0.2705 0.042 42
7 2.4902 0.3645 0.056 84
8 3.2102 0.4592 0.060 63
9 1.2302 0.1752 0.018 32

10 1.8602 0.266 0.024 63
11 2.4902 0.36 0.041 05
12 3.2102 0.4592 0.067 58

(d) Cross-section 2 back ski 1.

Test Weight Deflection Deflection
no. [kg] [mm] [mm]

1 1.2302 0.2332 0.075 79
2 1.8602 0.3523 0.1105
3 2.4902 0.4766 0.1288
4 3.2102 0.5996 0.1623
5 1.2302 0.2261 0.050 53
6 1.8602 0.3452 0.108
7 2.4902 0.4663 0.1187
8 3.2102 0.5887 0.139
9 1.2302 0.2274 0.050 53

10 1.8602 0.3491 0.1143
11 2.4902 0.4702 0.1288
12 3.2102 0.5926 0.1566

(e) Cross-section 3 back ski 1.

Test Weight Deflection Deflection
no. [kg] [mm] [mm]

1 1.2302 0.2795 0.1131
2 1.8602 0.4232 0.1743
3 2.4902 0.5694 0.2089
4 3.2102 0.7201 0.2774
5 1.2302 0.277 0.1023
6 1.8602 0.4232 0.1699
7 2.4902 0.575 0.2149
8 3.2102 0.722 0.2779
9 1.2302 0.275 0.095 37

10 1.8602 0.4219 0.168
11 2.4902 0.5694 0.2128
12 3.2102 0.724 0.2817

(f) Cross-section 1 front ski 2.

Test Weight Deflection Deflection
no. [kg] [mm] [mm]

1 1.2302 0.2473 0.041 05
2 1.8602 0.3716 0.058 74
3 2.4902 0.4959 0.084 63
4 3.2102 0.619 0.097 27
5 1.2302 0.2396 0.041 05
6 1.8602 0.3613 0.058 74
7 2.4902 0.4837 0.081 45
8 3.2102 0.6054 0.095 37
9 1.2302 0.2396 0.034 11

10 1.8602 0.3639 0.060 63
11 2.4902 0.4844 0.082 74
12 3.2102 0.6067 0.099 79
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(g) Cross-section 2 front ski 2.

Test Weight Deflection Deflection
no. [kg] [mm] [mm]

1 1.2302 0.3208 0.084 63
2 1.8602 0.4792 0.127
3 2.4902 0.6383 0.1686
4 3.2102 0.798 0.2127
5 1.2302 0.3162 0.084
6 1.8602 0.4811 0.1295
7 2.4902 0.6389 0.1724
8 3.2102 0.7955 0.204
9 1.2302 0.3117 0.075 79

10 1.8602 0.4721 0.1181
11 2.4902 0.6319 0.1636
12 3.2102 0.7929 0.2027

(h) Cross-section 3 front ski 2.

Test Weight Deflection Deflection
no. [kg] [mm] [mm]

1 1.2302 0.3819 0.1143
2 1.8602 0.5739 0.1945
3 2.4902 0.7685 0.2735
4 3.2102 0.9584 0.3215
5 1.2302 0.3832 0.1213
6 1.8602 0.5752 0.1926
7 2.4902 0.771 0.2691
8 3.2102 0.9616 0.3316
9 1.2302 0.3819 0.1326

10 1.8602 0.5765 0.199
11 2.4902 0.7697 0.2621
12 3.2102 0.9636 0.3354

(i) Cross-section 1 back ski 2.

Test Weight Deflection Deflection
no. [kg] [mm] [mm]

1 1.2302 0.1894 0.042 32
2 1.8602 0.2976 0.062 53
3 2.4902 0.4 0.075 79
4 3.2102 0.505 0.1042
5 1.2302 0.1881 0.032 84
6 1.8602 0.286 0.052 42
7 2.4902 0.3923 0.084 63
8 3.2102 0.489 0.1004
9 1.2302 0.1874 0.035 37

10 1.8602 0.285 0.058 74
11 2.4902 0.385 0.0767
12 3.2102 0.4844 0.099 16

(j) Cross-section 2 back ski 2.

Test Weight Deflection Deflection
no. [kg] [mm] [mm]

1 1.2302 0.248 0.078 95
2 1.8602 0.3781 0.1206
3 2.4902 0.5095 0.168
4 3.2102 0.6409 0.2185
5 1.2302 0.248 0.087 89
6 1.8602 0.3768 0.1213
7 2.4902 0.5089 0.1667
8 3.2102 0.6383 0.2116
9 1.2302 0.2525 0.0859

10 1.8602 0.38 0.1219
11 2.4902 0.5101 0.1642
12 3.2102 0.6422 0.2167

(k) Cross-section 3 back ski 2.

Test Weight Deflection Deflection
no. [kg] [mm] [mm]

1 1.2302 0.3111 0.1288
2 1.8602 0.4728 0.2002
3 2.4902 0.6338 0.2716
4 3.2102 0.8 0.35
5 1.2302 0.3085 0.1244
6 1.8602 0.4695 0.1964
7 2.4902 0.6312 0.2667
8 3.2102 0.7922 0.3392
9 1.2302 0.3085 0.1408

10 1.8602 0.4692 0.1965
11 2.4902 0.6299 0.2667
12 3.2102 0.7929 0.3493
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Table B.5: Test of E-modulus for ash sections.

(a) Cross-section 1.

Test Weight Deflection
no. [kg] [mm]

1 0.334 0.2128
2 0.649 0.439
3 0.964 0.6663
4 0.334 0.2065
5 0.649 0.4194
6 0.964 0.6512
7 0.334 0.2116
8 0.649 0.4251
9 0.964 0.6487

(b) Cross-section 2.

Test Weight Deflection
no. [kg] [mm]

1 0.334 0.2154
2 0.649 0.403
3 0.964 0.6133
4 0.334 0.18
5 0.649 0.3746
6 0.964 0.5893
7 0.334 0.2261
8 0.649 0.4465
9 0.964 0.6589

(c) Cross-section 3.

Test Weight Deflection
no. [kg] [mm]

1 0.334 0.168
2 0.649 0.3227
3 0.964 0.4945
4 0.334 0.1648
5 0.649 0.3082
6 0.964 0.475
7 0.334 0.1516
8 0.649 0.3063
9 0.964 0.4724

(d) Cross-section 4.

Test Weight Deflection
no. [kg] [mm]

1 0.334 0.187
2 0.649 0.3606
3 0.964 0.5514
4 0.334 0.1686
5 0.649 0.3373
6 0.964 0.5166
7 0.334 0.1699
8 0.649 0.3335
9 0.964 0.5236

(e) Cross-section 5.

Test Weight Deflection
no. [kg] [mm]

1 0.334 0.1617
2 0.649 0.3139
3 0.964 0.487
4 0.334 0.1352
5 0.649 0.3019
6 0.964 0.4636
7 0.334 0.1402
8 0.649 0.295
9 0.964 0.4611

(f) Cross-section 6.

Test Weight Deflection
no. [kg] [mm]

1 0.334 0.1901
2 0.649 0.3474
3 0.964 0.5255
4 0.334 0.1699
5 0.649 0.3101
6 0.964 0.4838
7 0.334 0.1648
8 0.649 0.3114
9 0.964 0.4914

(g) Cross-section 7.

Test Weight Deflection
no. [kg] [mm]

1 0.334 0.2217
2 0.649 0.4345
3 0.964 0.667
4 0.334 0.2154
5 0.649 0.4213
6 0.964 0.6455
7 0.334 0.2147
8 0.649 0.4194
9 0.964 0.6322

(h) Cross-section 8.

Test Weight Deflection
no. [kg] [mm]

1 0.334 0.2369
2 0.649 0.4263
3 0.964 0.6588
4 0.334 0.2046
5 0.649 0.4213
6 0.964 0.6348
7 0.334 0.1983
8 0.649 0.4068
9 0.964 0.6329
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Table B.6: Test of shear-modulus for ash sections.

(a) Cross-section 1.

Test Weight Rotation
no. [kg] [◦]
1 1.545 0.1
2 2.175 0.1
3 2.805 0.2
4 1.545 0.04
5 2.175 0.1
6 2.805 0.15

(b) Cross-section 2.

Test Weight Rotation
no. [kg] [◦]
1 1.545 0.1
2 2.175 0.2
3 2.805 0.2
4 1.545 0.1
5 2.175 0.2
6 2.805 0.25

(c) Cross-section 3.

Test Weight Rotation
no. [kg] [◦]
1 1.545 0.1
2 2.175 0.2
3 2.805 0.3
4 1.545 0.1
5 2.175 0.2
6 2.805 0.3

(d) Cross-section 4.

Test Weight Rotation
no. [kg] [◦]
1 1.545 0.2
2 2.175 0.2
3 2.805 0.3
4 1.545 0.2
5 2.175 0.2
6 2.805 0.3

(e) Cross-section 5.

Test Weight Rotation
no. [kg] [◦]
1 1.545 0.2
2 2.175 0.2
3 2.805 0.3
4 1.545 0.1
5 2.175 0.2
6 2.805 0.3

(f) Cross-section 6.

Test Weight Rotation
no. [kg] [◦]
1 1.545 0.2
2 2.175 0.2
3 2.805 0.3
4 1.545 0.15
5 2.175 0.2
6 2.805 0.3

(g) Cross-section 7.

Test Weight Rotation
no. [kg] [◦]
1 1.545 0.1
2 2.175 0.2
3 2.805 0.3

(h) Cross-section 8.

Test Weight Rotation
no. [kg] [◦]
1 1.545 0.2
2 2.175 0.3
3 2.805 0.3
4 1.545 0.2
5 2.175 0.3
6 2.805 0.4
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Table B.7: Test of E-modulus for aspen sections.

(a) Cross-section 1.

Test Weight Deflection
no. [kg] [mm]

1 0.334 0.2962
2 0.649 0.6007
3 0.964 0.912
4 0.334 0.2779
5 0.649 0.5564
6 0.964 0.8539
7 0.334 0.271
8 0.649 0.5545
9 0.964 0.8457

(b) Cross-section 2.

Test Weight Deflection
no. [kg] [mm]

1 0.334 0.7175
2 0.649 1.336
3 0.964 1.88
4 0.334 0.732
5 0.649 1.347
6 0.964 1.908
7 0.334 0.7434
8 0.649 1.356
9 0.964 1.916

(c) Cross-section 3.

Test Weight Deflection
no. [kg] [mm]

1 0.334 0.2116
2 0.649 0.4232
3 0.964 0.6417
4 0.334 0.2046
5 0.649 0.4011
6 0.964 0.612
7 0.334 0.2059
8 0.649 0.403
9 0.964 0.6114

(d) Cross-section 4.

Test Weight Deflection
no. [kg] [mm]

1 0.334 0.5981
2 0.649 1.119
3 0.964 1.484
4 0.334 0.5767
5 0.649 1.095
6 0.964 1.44
7 0.334 0.6291
8 0.649 1.156
9 0.964 1.501

(e) Cross-section 5.

Test Weight Deflection
no. [kg] [mm]

1 0.334 0.2053
2 0.649 0.4188
3 0.964 0.6164
4 0.334 0.2147
5 0.649 0.4244
6 0.964 0.631
7 0.334 0.2192
8 0.649 0.4276
9 0.964 0.6379

(f) Cross-section 6.

Test Weight Deflection
no. [kg] [mm]

1 0.334 0.5103
2 0.649 0.9398
3 0.964 1.304
4 0.334 0.5217
5 0.649 0.9613
6 0.964 1.314
7 0.334 0.523
8 0.649 0.9607
9 0.964 1.311

(g) Cross-section 7.

Test Weight Deflection
no. [kg] [mm]

1 0.334 0.276
2 0.649 0.5476
3 0.964 0.8362
4 0.334 0.295
5 0.649 0.5665
6 0.964 0.8508
7 0.334 0.2918
8 0.649 0.564
9 0.964 0.8564

(h) Cross-section 8.

Test Weight Deflection
no. [kg] [mm]

1 0.334 1.008
2 0.649 1.84
3 0.964 2.377
4 0.334 1.022
5 0.649 1.851
6 0.964 2.378
7 0.334 1.02
8 0.649 1.859
9 0.964 2.384
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Table B.8: Test of shear-modulus for aspen sections.

(a) Cross-section 1.

Test Weight Rotation
no. [kg] [◦]
1 1.545 0.4
2 2.175 0.5
3 2.805 0.6
4 1.545 0.35
5 2.175 0.5
6 2.805 0.6

(b) Cross-section 2.

Test Weight Rotation
no. [kg] [◦]
1 1.545 1.2
2 2.175 1.3
3 2.805 1.4
4 1.545 1.1
5 2.175 0.12
6 2.805 1.3

(c) Cross-section 3.

Test Weight Rotation
no. [kg] [◦]
1 1.545 0.5
2 2.175 0.65
3 2.805 0.8
4 1.545 0.4
5 2.175 0.55
6 2.805 0.75

(d) Cross-section 4.

Test Weight Rotation
no. [kg] [◦]
1 1.545 0.75
2 2.175 1
3 2.805 1.2
4 1.545 0.75
5 2.175 1.5
6 2.805 1.35

(e) Cross-section 5.

Test Weight Rotation
no. [kg] [◦]
1 1.545 0.3
2 2.175 0.45
3 2.805 0.6
4 1.545 0.3
5 2.175 0.45
6 2.805 0.6

(f) Cross-section 6.

Test Weight Rotation
no. [kg] [◦]
1 1.545 0.5
2 2.175 0.6
3 2.805 0.8
4 1.545 0.45
5 2.175 0.65
6 2.805 0.8

(g) Cross-section 7.

Test Weight Rotation
no. [kg] [◦]
1 1.545 0.5
2 2.175 0.7
3 2.805 0.9
4 1.545 0.4
5 2.175 0.6
6 2.805 0.8

(h) Cross-section 8.

Test Weight Rotation
no. [kg] [◦]
1 1.545 1.25
2 2.175 1.75
3 2.805 2.15
4 1.545 1.3
5 2.175 1.8
6 2.805 2.3
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LABORATORY TESTS OF FINISHED SKIS

Table C.1: Test of deflection for the first finished ski.

(a) Cross-section 1 front ski 1.

Test Weight Deflection
no. [kg] [mm]

1 1.453 0.076 65
2 1.768 0.098 85
3 2.083 0.1108
4 2.398 0.1275
5 1.453 0.068 92
6 1.768 0.9339
7 2.083 0.1063
8 2.398 0.1211
9 1.453 0.070 21

10 1.768 0.088 24
11 2.083 0.1037
12 2.398 0.1211

(b) Cross-section 2 front ski 1.

Test Weight Deflection
no. [kg] [mm]

1 1.453 0.1043
2 1.768 0.134
3 2.083 0.1539
4 2.398 0.1758
5 1.453 0.1063
6 1.768 0.1327
7 2.083 0.1559
8 2.398 0.1771
9 1.453 0.1031

10 1.768 0.1356
11 2.083 0.1565
12 2.398 0.1797

(c) Cross-section 3 front ski 1.

Test Weight Deflection
no. [kg] [mm]

1 1.453 0.1423
2 1.768 0.1797
3 2.083 0.2093
4 2.398 0.2402
5 1.453 0.1443
6 1.768 0.1842
7 2.083 0.2093
8 2.398 0.2435
9 1.453 0.1372

10 1.768 0.1752
11 2.083 0.2074
12 2.398 0.237

(d) Cross-section 1 back ski 1.

Test Weight Deflection
no. [kg] [mm]

1 1.453 0.1417
2 1.768 0.1745
3 2.083 0.1952
4 2.398 0.2222
5 1.453 0.134
6 1.768 0.1713
7 2.083 0.1926
8 2.398 0.2196
9 1.453 0.1398

10 1.768 0.1662
11 2.083 0.1907
12 2.398 0.2151

(e) Cross-section 2 back ski 1.

Test Weight Deflection
no. [kg] [mm]

1 1.453 0.1913
2 1.768 0.2377
3 2.083 0.2712
4 2.398 0.3066
5 1.453 0.1919
6 1.768 0.2344
7 2.083 0.2699
8 2.398 0.3072
9 1.453 0.1939

10 1.768 0.2338
11 2.083 0.2699
12 2.398 0.3066

(f) Cross-section 3 back ski 1.

Test Weight Deflection
no. [kg] [mm]

1 1.453 0.2473
2 1.768 0.2963
3 2.083 0.3381
4 2.398 0.3826
5 1.453 0.2467
6 1.768 0.2963
7 2.083 0.3401
8 2.398 0.3845
9 1.453 0.246

10 1.768 0.2979
11 2.083 0.3407
12 2.398 0.3832

69
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Table C.2: Test of deflection for the second finished ski.

(g) Cross-section 1 front ski 2.

Test Weight Deflection
no. [kg] [mm]

1 1.453 0.061 19
2 1.768 0.083 09
3 2.083 0.092 75
4 2.398 0.1089
5 1.453 0.057 32
6 1.768 0.077 93
7 2.083 0.090 17
8 2.398 0.1063
9 1.453 0.056 68

10 1.768 0.077 93
11 2.083 0.0921
12 2.398 0.1056

(h) Cross-section 2 front ski 2.

Test Weight Deflection
no. [kg] [mm]

1 1.453 0.095 33
2 1.768 0.1217
3 2.083 0.143
4 2.398 0.1662
5 1.453 0.089 53
6 1.768 0.1153
7 2.083 0.1385
8 2.398 0.1597
9 1.453 0.088 24

10 1.768 0.114
11 2.083 0.1353
12 2.398 0.1604

(i) Cross-section 3 front ski 2.

Test Weight Deflection
no. [kg] [mm]

1 1.453 0.123
2 1.768 0.1572
3 2.083 0.1874
4 2.398 0.219
5 1.453 0.1159
6 1.768 0.1533
7 2.083 0.1797
8 2.398 0.2106
9 1.453 0.125

10 1.768 0.1552
11 2.083 0.1855
12 2.398 0.2222

(j) Cross-section 1 back ski 2.

Test Weight Deflection
no. [kg] [mm]

1 1.453 0.1514
2 1.768 0.1952
3 2.083 0.2216
4 2.398 0.2525
5 1.453 0.1418
6 1.768 0.1881
7 2.083 0.2125
8 2.398 0.2473
9 1.453 0.1282

10 1.768 0.1784
11 2.083 0.1997
12 2.398 0.2267

(k) Cross-section 2 back ski 2.

Test Weight Deflection
no. [kg] [mm]

1 1.453 0.1913
2 1.768 0.2415
3 2.083 0.2782
4 2.398 0.3182
5 1.453 0.1939
6 1.768 0.2525
7 2.083 0.2802
8 2.398 0.3208
9 1.453 0.1932

10 1.768 0.2454
11 2.083 0.2821
12 2.398 0.3201

(l) Cross-section 3 back ski 2.

Test Weight Deflection
no. [kg] [mm]

1 1.453 0.2667
2 1.768 0.3227
3 2.083 0.3736
4 2.398 0.4167
5 1.453 0.2506
6 1.768 0.3137
7 2.083 0.3626
8 2.398 0.4122
9 1.453 0.2705

10 1.768 0.3304
11 2.083 0.3839
12 2.398 0.4257
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